The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea)

  • 660 Accesses

  • 30 Citations


To examine the evolution of development and put it into a phylogenetic context, it is important to have, in addition to a model organism like Drosophila, more insights into the huge diversity of arthropod morphologies. In recent years, the malacostracan crustacean Porcellio scaber Latreille, 1804 has become a popular animal for studies in evolutionary and developmental biology, but a detailed and complete description of its embryonic development is still lacking. Therefore, the embryonic development of the woodlouse P. scaber is described in a series of discrete stages easily identified by examination of living animals and the widely used technique of nuclei staining on fixed specimens. It starts with the first cleavage of the zygote and ends with a hatched manca that eventually leaves the mother’s brood pouch. Classical methods like normal light microscopy, scanning electron microscopy and fluorescence microscopy are used, in addition to confocal LCM and computer-aided 3D reconstruction in order to visualise important processes during ontogeny. The purpose of these studies is to offer an easy way to define the different degrees of development for future comparative analyses of embryonic development amongst crustaceans in particular, as well as between different arthropod groups. In addition, several aspects of Porcellio embryonic development, such as the mouth formation, limb differentiations and modifications or the formation of the digestive tract, make this species particularly interesting for future studies in evolutionary and developmental biology.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Abzhanov A, Kaufman TC (1999a) Homeotic genes and the arthropod head: expression patterns of the labial, proboscipedia, and Deformed genes in crustaceans and insects. PNAS USA 96:10224–10229

  2. Abzhanov A, Kaufman TC (1999b) Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. Development 126:1121–1128

  3. Abzhanov A, Kaufman TC (2000a) Crustacean (malacostracan) Hox genes and the evolution of the arthropod trunk. Development 127:2239–2249

  4. Abzhanov A, Kaufman TC (2000b) Evolution of distinct expression patterns for engrailed paralogues in higher crustaceans (Malacostraca). Dev Genes Evol 210:493–506

  5. Abzhanov A, Kaufman TC (2000c) Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Dev Biol 227:673–689

  6. Abzhanov A, Kaufman TC (2004) Hox genes and tagmatization of the higher Crustacea (Malacostraca). In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. A.A. Balkema, Lisse, pp 43–71

  7. Alwes F (2008) Cell lineage studies in Crustacea—Aspects of the early development and germ layer formation in Meganyctiphanes norvegica (Malacostraca, Euphausiacea) and Bythotrephes longimanus (Cladocera, Branchiopoda). Humboldt-University Berlin. Ph.D. thesis, pp 109

  8. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, Oxford, p 495

  9. Araujo PB, Quadros AF, Augusto MM, Bond-Buckup G (2004) Postmarsupial development of Atlantoscia floridana (van Name, 1940) (Crustacea, Isopoda, Oniscidea): sexual differentiation and size at onset of sexual maturity. Inv Repr Dev 45:221–230

  10. Averof M, Cohen SM (1997) Evolutionary origin of insect wings from ancestral gills. Nature 385:627–630

  11. Bitsch J (2001) The hexapod appendage: basic structure, development and origin. Ann Soc Entomol Fr (NS) 37:175–193

  12. Borradaile LA (1926) Notes upon crustacean limbs. Ann Mag Nat Hist Ser 9 17(98):193–213

  13. Boxshall GA (2004) The evolution of arthropod limbs. Biol Rev 79:253–300

  14. Boxshall GA, Jaume D (2009) Exopodites, epipodites and gills in crustaceans. Arth Syst Phyl 67:229–254

  15. Brena C, Liu PZ, Minelli A, Kaufman TC (2005) Abd-B expression in Porcellio scaber Latreille, 1804 (Isopoda: Crustacea): conserved pattern versus novel roles in development and evolution. Evol Dev 7:42–50

  16. Browne WE, Price AL, Gerberding M, Patel NH (2005) Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis 42:124–149

  17. Brum PED, Araujo PB (2007) The manca stages of Porcellio dilatatus Brandt (Crustacea, Isopoda, Oniscidea). Rev Brasil Zool 24:493–502

  18. Bullar JF (1878) On the development of the parasitic Isopoda. Phil Trans Roy Soc London 169:505–521

  19. Calman WT (1909) Crustacea. In: Lankester ER (ed) A treatise on zoology. Adam and Charles Black, London, p 346

  20. Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin, p 405

  21. Damen WGM, Saridaki T, Averof M (2002) Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets. Cur Biol 12:1711–1716

  22. de Celis JF, Llimargas M, Casanova J (1995) Ventral veinless, the gene encoding the Cf1 a transcription factor, links positional information and cell differentiation during embryonic and imaginal development in Drosophila melanogaster. Development 121:3405–3416

  23. Dohle W, Scholtz G (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development Suppl 104:147–160

  24. Dohle W, Scholtz G (1997) How far does cell lineage influence cell fate specification in crustacean embryos? Sem Cell Dev Biol 8:379–390

  25. Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. Crustacean issues 15. A.A. Balkema, Lisse, pp 95–133

  26. Dohrn A (1866) Die embryonale Entwicklung des Asellus aquaticus. Z Wiss Zool 17:221–278

  27. Drobne D (1997) Terrestrial isopods—a good choice for toxicity testing of pollutants in the terrestrial environment. Environ Toxicol Chem 16:1159–1164

  28. Franch-Marro X, Martin N, Averof M, Casanova J (2006) Association of tracheal placodes with leg primordia in Drosophila and implications for the origin of insect tracheal systems. Development 133:785–790

  29. Gerberding M (1994) Superfizielle Furchung, Bildung des Keimstreifs und Differenzierung von Neuroblasten bei Leptodora kindti Focke 1844 (Cladocera, Crustacea). Humboldt-University Berlin, Diploma thesis, pp 60

  30. Goodrich AL (1939) The origin and fate of the entoderm elements in the embryogeny of Porcellio laevis Latr. and Armadillidium nasatum B.L. (Isopoda). J Morph 64:401–429

  31. Gruner HE (1954) Über das Coxalglied der Peripoden der Isopoden. Zool Anz 152:312–317

  32. Gruner H-E (1965) Krebstiere oder Crustacea, V. Isopoda (erster Teil). In: Dahl F (ed) Die Tierwelt Deutschlands, 51. Teil. Gustav Fischer, Jena, p 149

  33. Gruner H-E (1966) Krebstiere oder Crustacea, V. Isopoda (zweiter Teil). In: Dahl F (ed) Die Tierwelt Deutschlands, 53. Teil. Gustav Fischer, Jena, p 230

  34. Gruner H-E (1993) Klasse Crustacea. In: Gruner H-E (ed) Lehrbuch der speziellen Zoologie. Gustav Fischer, Jena, pp 448–1009, Band 1: Wirbellose Tiere, 4. Teil: Arthropoda (ohne Insecta)

  35. Hahnenkamp L (1974) Die Bildung und Differenzierung des Keimstreifs der Asseln (Isopoda) und anderer höherer Krebse. Eine vergleichend-embryologische Studie. Berlin, Freie Universität. Hausarbeit für die erste (wissenschaftliche) Staatsprüfung, pp 180

  36. Hames CAC, Hopkin SP (1989) The structure and function of the digestive system of terrestrial isopods. J Zool 217:599–627

  37. Hansen HJ (1925) Studies on Arthropoda II. On the comparative morphology of the appendages in the Arthropoda. A. Crustacea. Gyldendalske Boghandel, Copenhagen, p 157

  38. Hartenstein V (1993) Atlas of Drosophila development. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, p 57

  39. Havemann J, Müller U, Berger J, Schwarz H, Gerberding M, Moussian B (2008) Cuticle differentiation in the embryo of the amphipod crustacean Parhyale hawaiensis. Cell Tissue Res 332:359–370

  40. Hejnol A, Scholtz G (2004) Clonal analysis of Distal-less and engrailed expression patterns during early morphogenesis of uniramous and biramous crustacean limbs. Dev Genes Evol 214:473–485

  41. Hejnol A, Schnabel R, Scholtz G (2006) A 4D-microscopic analysis of the germ band in the isopod crustacean Porcellio scaber (Peracarida, Malacostraca)—developmental and phylogenetic implications. Dev Genes Evol 216:755–767

  42. Hickman VV (1937) The embryology of the syncarid crustacean, Anaspides tasmaniae. Paps Proc Roy Soc Tasmania 1–35

  43. Hoese B (1981) Morphologie und Funktion des Wasserleitungssystems der terrestrischen Isopoden (Crustacea, Isopoda, Oniscoidea). Zoomorphology 98:135–167

  44. Hoese B (1983) Structures and development of the lungs in Tylidae (Crustacea, Isopoda, Oniscidoidea). Zool Jb Anat 109:487–501

  45. Hoese B, Janssen HH (1989) Morphological and physiological studies on the marsupium in terrestrial isopods. Ital J Zool 4:153–173

  46. Holdich DM (1973) The midgut/hindgut controversy in isopods. Crustaceana 24:211–214

  47. Jaume D (2001) A new atlantasellid isopod (Asellota: Aselloidea) from the flooded coastal karst of the Dominican Republic (Hispaniola): evidence for an exopod on a thoracic limb and biogeographical implications. J Zool 255:221–233

  48. Kajishima T (1952) Experimental studies on the embryonic development of the isopod crustacean, Megaligia exotica Roux. Annat Zool Jap 25:172–181

  49. Knopf F, Koenemann S, Schram FR, Wolff C (2006) The urosome of the pan- and Peracarida. Cont Biol 75:1–21

  50. Kreissl S, Uber A, Harzsch S (2008) Muscle precursor cells in the developing limbs of two isopods (Crustacea, Peracarida): an immunohistochemical study using a novel monoclonal antibody against myosin heavy chain. Dev Genes Evol 218:253–265

  51. Lauterbach KE (1975) Über die Herkunft der Malacostraca (Crustacea). Zool Anz 194:165–179

  52. Liu Y, Maas A, Waloszek D (2009) Early development of the anterior body region of the grey widow spider Latrodectus geometricus Koch, 1841 (Theridiidae, Araneae). Arthr Struct Dev 38:401–416

  53. Manton SM (1928) On the embryology of a mysid crustacean, Hemimysis lamornae. Phil Trans Roy Soc London 216:363–463

  54. McMurrich JP (1895) Embryology of the isopod Crustacea. J Morph 11:63–154

  55. Morgan TH (1891) A contribution to the embryology and phylogeny of the pycnogonids. Stud Biol Lab J Hopkins Univ 5:1–76

  56. Nair SG (1956) On the embryology of the isopod Irona. J Dev Exp Morph 4:1–33

  57. Nusbaum J (1891) Beiträge zur Embryologie der Isopoden. Zool Anz 11:42–49

  58. Powell CVL, Halcrow K (1985) Formation of the epicuticle in a marine isopod, Idotea baltica (Pallas). J Crust Biol 5:439–448

  59. Richter S, Scholtz G (2001) Phylogenetic analysis of the Malacostraca (Crustacea). J Zool Syst Evol Res 39:113–136

  60. Samter M (1900) Studien zur Entwicklungsgeschichte der Leptodora hyalina Lillj. Z Wiss Zool 68:169–260

  61. Schmidt C, Wägele JW (2001) Morphology and evolution of respiratory structures in the pleopod exopodites of terrestrial Isopoda (Crustacea, Isopoda, Oniscidea). Act Zool 82:315–330

  62. Scholl G (1963) Embryologische Untersuchungen an Tanaidaceen (Heterotanais oerstedi Kröyer). Zool Jb Anat 80:500–554

  63. Scholtz G (1995) Expression of the engrailed gene reveals nine putative segment-anlagen in the embryonic pleon of the freshwater crayfish Cherax destructor (Crustacea, Malacostraca, Decapoda). Biol Bull 188:157–165

  64. Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships, vol 24. Chapman & Hall, London, pp 317–332

  65. Scholtz G, Dohle W (1996) Cell lineage and cell fate in crustacean embryos—a comparative approach. Int J Dev Biol 40:211–220

  66. Scholtz G, Wolff C (2002) Cleavage, gastrulation, and germ disc formation in the amphipod Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Cont Biol 71:9–28

  67. Schram FR (1986) Crustacea. Oxford Press, New York, p 606

  68. Shiino SM (1942) Studies on the embryology of Squilla oratoria de Haan. Mem Coll Sci Kyoto Imp Univ Series B 17:77–174

  69. Snodgrass RE (1952) A textbook of arthropod anatomy. Comstock, Ithaca, p 363

  70. Strömberg J-O (1965) On the embryology of the isopod Idotea. Ark Zool 17:421–467

  71. Strömberg J-O (1967) Segmentation and organogenesis in Limnoria lignorum (Rathke) (Isopoda). Ark Zool 20:91–139

  72. Strömberg J-O (1971) Contribution to the embryology of bopryid isopods; with special reference to Bopyroides, Hemiarthrus and Pseudione (Isopoda, Epicaridea). Sarsia 47:1–47

  73. Strömberg J-O (1972) Cyathura polita (Crustacea, Isopoda), some embryological notes. Bull Mar Sci 22:463–482

  74. Strus J, Drobne D, Licar P (1995) Comparative anatomy and functional aspects of the digestive system in amphibious and terrestrial isopods (Isopoda: Oniscidea). In: Alikhan MA (ed) Crustacean Issues 9; terrestrial isopod biology. A.A. Balkema, Rotterdam, pp 15–23

  75. Strus J, Klepal W, Repina J, Tusek-Znidaric M, Milatovic M, Pipan Z (2008) Ultrastructure of the digestive system and the fate of midgut during embryonic development in Porcellio scaber (Crustacea: Isopoda). Arthr Struct Dev 37:287–98

  76. Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V (2008) The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454:651–656

  77. Thiele J (1905) Betrachtungen über die Phylogenie der Crustaceenbeine. Z Wiss Zool 82:445–471

  78. Tomescu N, Craciun C (1987) Postembryonic ontogenetic development in Porcellio scaber (Crustacea, Isopoda). Pedobiologia 30:345–350

  79. Ungerer P, Wolff C (2005) External morphology of limb development in the amphipod Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Zoomorphology 124:89–99

  80. Wägele JW (1992) Isopoda. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, Crustacea, vol 9. Wiley-Liss, New York, pp 529–617

  81. Walossek D (1999) On the Cambrian diversity of Crustacea. Crustaceans and the biodiversity crises. Proceedings of the 4th International Crustacean Congress. Brill, Amsterdam, pp 3–27

  82. Walossek D (2003) Cambrian ‘Orsten’-type arthropods and the phylogeny of Crustacea. The new panorama of animal evolution. Proceedings of the 18th International Congress of Zoology. Pensoft, Athens, pp 71–88

  83. Weygoldt P (1958) Die Embryonalentwicklung des Amphipoden Gammarus pulex pulex (L). Zool Jb Anat 77:51–110

  84. Whitington PM, Leach D, Sandeman R (1993) Evolutionary change in neural development within the arthropods: axogenesis in the embryo of two crustaceans. Development 118:449–461

  85. Wilson GDF (2009) The phylogenetic position of the Isopoda in the Peracarida (Crustacea: Malacostraca). Arthr Syst Phyl 67:159–198

  86. Wolff C, Scholtz G (2008) The clonal composition of biramous and uniramous arthropod limbs. Proc R Soc B 275:1023–1028

  87. Zidar P, Van Gestel CAM, Strus J (2009) Single and joint effects of Zn and Cd on Porcellio scaber (Crustacea, Isopoda) exposed to artificially contaminated food. Ecotoxicol Environ Saf 72:2075–2082

Download references


I thank R. Mbacke for the help with collecting specimens and G. Drescher (Natural History Museum, Berlin) for the support in using the SEM. I also thank Kristen Panfilio and the two reviewers for the helpful advice and Greg Edgecombe for improving the English.

Author information

Correspondence to Carsten Wolff.

Additional information

Communicated by S. Roth

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file. Mpg movie: Gut_peristaltic_stage15: The time lapse movie (normal light microscope) shows the peristaltic contractions of the midgut anlagen in a living Porcellio embryo (lateral view, anterior is left). Note that only the posterior part of the midgut is moving. While the midgut tubes elongate more and more during development, the contractions are more frequent (approximately two times per minute). (MPG 498 kb)

Supplementary file. Mpg movie: Gut_peristaltic_stage15: The time lapse movie (normal light microscope) shows the peristaltic contractions of the midgut anlagen in a living Porcellio embryo (lateral view, anterior is left). Note that only the posterior part of the midgut is moving. While the midgut tubes elongate more and more during development, the contractions are more frequent (approximately two times per minute). (MPG 498 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wolff, C. The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea). Dev Genes Evol 219, 545–564 (2009) doi:10.1007/s00427-010-0316-6

Download citation


  • Arthropods
  • Isopoda
  • Embryogenesis
  • Evolution
  • Direct development
  • Crustacea