Advertisement

Development Genes and Evolution

, Volume 219, Issue 9–10, pp 481–496 | Cite as

Conservation of gene linkage in dispersed vertebrate NK homeobox clusters

  • Karl R. Wotton
  • Frida K. Weierud
  • José L. Juárez-Morales
  • Lúcia E. Alvares
  • Susanne Dietrich
  • Katharine E. Lewis
Original Article

Abstract

Nk homeobox genes are important regulators of many different developmental processes including muscle, heart, central nervous system and sensory organ development. They are thought to have arisen as part of the ANTP megacluster, which also gave rise to Hox and ParaHox genes, and at least some NK genes remain tightly linked in all animals examined so far. The protostome–deuterostome ancestor probably contained a cluster of nine Nk genes: (Msx)–(Nk4/tinman)–(Nk3/bagpipe)–(Lbx/ladybird)–(Tlx/c15)–(Nk7)–(Nk6/hgtx)–(Nk1/slouch)–(Nk5/Hmx). Of these genes, only NKX2.6NKX3.1, LBX1TLX1 and LBX2TLX2 remain tightly linked in humans. However, it is currently unclear whether this is unique to the human genome as we do not know which of these Nk genes are clustered in other vertebrates. This makes it difficult to assess whether the remaining linkages are due to selective pressures or because chance rearrangements have “missed” certain genes. In this paper, we identify all of the paralogs of these ancestrally clustered NK genes in several distinct vertebrates. We demonstrate that tight linkages of Lbx1Tlx1, Lbx2Tlx2 and Nkx3.1Nkx2.6 have been widely maintained in both the ray-finned and lobe-finned fish lineages. Moreover, the recently duplicated Hmx2Hmx3 genes are also tightly linked. Finally, we show that Lbx1Tlx1 and Hmx2Hmx3 are flanked by highly conserved noncoding elements, suggesting that shared regulatory regions may have resulted in evolutionary pressure to maintain these linkages. Consistent with this, these pairs of genes have overlapping expression domains. In contrast, Lbx2Tlx2 and Nkx3.1Nkx2.6, which do not seem to be coexpressed, are also not associated with conserved noncoding sequences, suggesting that an alternative mechanism may be responsible for the continued clustering of these genes.

Keywords

Nkx Msx Lbx Tlx Hmx CNE 

Notes

Acknowledgements

This work was supported in part by a Royal Society University Research Fellowship to KEL and by a EU grant # LSH-CT-2004-511978 Myores to SD.

Supplementary material

427_2009_311_MOESM1_ESM.pdf (65 kb)
ESM 1 (PDF 65.3 kb)
427_2009_311_MOESM2_ESM.pdf (37 kb)
ESM 2 (PDF 37.3 kb)
427_2009_311_MOESM3_ESM.pdf (61 kb)
ESM 3 (PDF 61 kb)
427_2009_311_MOESM4_ESM.pdf (10.4 mb)
ESM 4 (PDF 10.4 mb)
427_2009_311_MOESM5_ESM.pdf (12.7 mb)
ESM 5 (PDF 12.6 mb)
427_2009_311_MOESM6_ESM.pdf (35.6 mb)
ESM 6 (PDF 35.5 mb)
427_2009_311_MOESM7_ESM.pdf (41.1 mb)
ESM 7 (PDF 41 mb)
427_2009_311_MOESM8_ESM.pdf (24.4 mb)
ESM 8 (PDF 24.4 mb)
427_2009_311_MOESM9_ESM.pdf (5.7 mb)
ESM 9 (PDF 5.68 mb)

References

  1. Adamska M, Leger S, Brand M, Hadrys T, Braun T, Bober E (2000) Inner ear and lateral line expression of a zebrafish Nkx5-1 gene and its downregulation in the ears of FGF8 mutant, ace. Mech Dev 97(1–2):161–165CrossRefPubMedGoogle Scholar
  2. Adamska M, Wolff A, Kreusler M, Wittbrodt J, Braun T, Bober E (2001) Five Nkx5 genes show differential expression patterns in anlagen of sensory organs in medaka: insight into the evolution of the gene family. Dev Genes Evol 211(7):338–349CrossRefPubMedGoogle Scholar
  3. Amemiya CT, Prohaska SJ, Hill-Force A, Cook A, Wasserscheid J, Ferrier DE, Pascual-Anaya J, Garcia-Fernandez J, Dewar K, Stadler PF (2008) The amphioxus Hox cluster: characterization, comparative genomics, and evolution. J Exp Zoolog B Mol Dev Evol 310(5):465–477CrossRefGoogle Scholar
  4. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282(5394):1711–1714CrossRefPubMedGoogle Scholar
  5. Biben C, Hatzistavrou T, Harvey RP (1998) Expression of NK-2 class homeobox gene Nkx2-6 in foregut endoderm and heart. Mech Dev 73(1):125–127CrossRefPubMedGoogle Scholar
  6. Bober E, Baum C, Braun T, Arnold HH (1994) A novel NK-related mouse homeobox gene: expression in central and peripheral nervous structures during embryonic development. Dev Biol 162(1):288–303CrossRefPubMedGoogle Scholar
  7. Brohmann H, Jagla K, Birchmeier C (2000) The role of Lbx1 in migration of muscle precursor cells. Development 127(2):437–445PubMedGoogle Scholar
  8. Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Green ED, Sidow A, Batzoglou S (2003a) LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 13(4):721–731CrossRefGoogle Scholar
  9. Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I, Batzoglou S (2003b) Glocal alignment: finding rearrangements during alignment. Bioinformatics 19(Suppl 1):i54–i62CrossRefGoogle Scholar
  10. Butts T, Holland PW, Ferrier DE (2008) The urbilaterian Super-Hox cluster. Trends Genet 24(6):259–262CrossRefPubMedGoogle Scholar
  11. Catchen J (2009) Automated methods to infer ancient homology and synteny. Ph.D. Dissertation, Department of Computer and Information Science, University of OregonGoogle Scholar
  12. Chen F, Liu KC, Epstein JA (1999) Lbx2, a novel murine homeobox gene related to the Drosophila ladybird genes is expressed in the developing urogenital system, eye and brain. Mech Dev 84(1–2):181–184CrossRefPubMedGoogle Scholar
  13. Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A, Gray PA, Arata S, Shirasawa S, Bouchard M, Luo P, Chen CL, Busslinger M, Goulding M, Onimaru H, Ma Q (2004) Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat Neurosci 7(5):510–517CrossRefPubMedGoogle Scholar
  14. Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, Goulding M, Ma Q (2005) Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat Neurosci 8(11):1510–1515CrossRefPubMedGoogle Scholar
  15. Chiu CH, Amemiya C, Dewar K, Kim CB, Ruddle FH, Wagner GP (2002) Molecular evolution of the HoxA cluster in the three major gnathostome lineages. Proc Natl Acad Sci U S A 99(8):5492–5497CrossRefPubMedGoogle Scholar
  16. Cleaver OB, Patterson KD, Krieg PA (1996) Overexpression of the tinman-related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia. Development 122(11):3549–3556PubMedGoogle Scholar
  17. de la Calle-Mustienes E, Feijoo CG, Manzanares M, Tena JJ, Rodriguez-Seguel E, Letizia A, Allende ML, Gomez-Skarmeta JL (2005) A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res 15(8):1061–1072CrossRefPubMedGoogle Scholar
  18. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3(10):e314CrossRefPubMedGoogle Scholar
  19. Deitcher DL, Fekete DM, Cepko CL (1994) Asymmetric expression of a novel homeobox gene in vertebrate sensory organs. J Neurosci 14(2):486–498PubMedGoogle Scholar
  20. Dietrich S, Schubert FR, Healy C, Sharpe PT, Lumsden A (1998) Specification of the hypaxial musculature. Development 125(12):2235–2249PubMedGoogle Scholar
  21. Engstrom PG, Ho Sui SJ, Drivenes O, Becker TS, Lenhard B (2007) Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res 17(12):1898–1908CrossRefPubMedGoogle Scholar
  22. Evans SM, Yan W, Murillo MP, Ponce J, Papalopulu N (1995) tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman. Development 121(11):3889–3899PubMedGoogle Scholar
  23. Ferrier DE, Minguillon C (2003) Evolution of the Hox/ParaHox gene clusters. Int J Dev Biol 47(7–8):605–611PubMedGoogle Scholar
  24. Fisher S, Grice EA, Vinton RM, Bessling SL, McCallion AS (2006) Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 312(5771):276–279CrossRefPubMedGoogle Scholar
  25. French CR, Erickson T, Callander D, Berry KM, Koss R, Hagey DW, Stout J, Wuennenberg-Stapleton K, Ngai J, Moens CB, Waskiewicz AJ (2007) Pbx homeodomain proteins pattern both the zebrafish retina and tectum. BMC Dev Biol 7:85CrossRefPubMedGoogle Scholar
  26. Garcia-Fernandez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6(12):881–892CrossRefPubMedGoogle Scholar
  27. Gross MK, Moran-Rivard L, Velasquez T, Nakatsu MN, Jagla K, Goulding M (2000) Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development 127(2):413–424PubMedGoogle Scholar
  28. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704CrossRefPubMedGoogle Scholar
  29. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33(Web Server issue):W557–W559CrossRefPubMedGoogle Scholar
  30. Hadrys T, Braun T, Rinkwitz-Brandt S, Arnold HH, Bober E (1998) Nkx5-1 controls semicircular canal formation in the mouse inner ear. Development 125(1):33–39PubMedGoogle Scholar
  31. Hardies SC, Edgell MH, Hutchison CA 3rd (1984) Evolution of the mammalian beta-globin gene cluster. J Biol Chem 259(6):3748–3756PubMedGoogle Scholar
  32. Hatano M, Iitsuka Y, Yamamoto H, Dezawa M, Yusa S, Kohno Y, Tokuhisa T (1997) Ncx, a Hox11 related gene, is expressed in a variety of tissues derived from neural crest cells. Anat Embryol (Berl) 195(5):419–425CrossRefGoogle Scholar
  33. Herbrand H, Guthrie S, Hadrys T, Hoffmann S, Arnold HH, Rinkwitz-Brandt S, Bober E (1998) Two regulatory genes, cNkx5-1 and cPax2, show different responses to local signals during otic placode and vesicle formation in the chick embryo. Development 125(4):645–654PubMedGoogle Scholar
  34. Hoegg S, Meyer A (2007) Phylogenomic analyses of KCNA gene clusters in vertebrates: why do gene clusters stay intact? BMC Evol Biol 7:139CrossRefPubMedGoogle Scholar
  35. Holland PW, Garcia-Fernandez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Dev Suppl 1994:125–133Google Scholar
  36. Holland PW, Booth HA, Bruford EA (2007) Classification and nomenclature of all human homeobox genes. BMC Biol 5:47CrossRefPubMedGoogle Scholar
  37. Houweling A, Dildrop R, Peters T, Mummenhoff J, Moorman A, Ruther U, Christoffels V (2001) Gene and cluster-specific expression of the Iroquois family members during mouse development. Mech Dev 107:169–174CrossRefPubMedGoogle Scholar
  38. Irimia M, Maeso I, Garcia-Fernandez J (2008) Convergent evolution of clustering of Iroquois homeobox genes across metazoans. Mol Biol Evol 25(8):1521–1525CrossRefPubMedGoogle Scholar
  39. Jagla K, Bellard M, Frasch M (2001) A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. Bioessays 23(2):125–133CrossRefPubMedGoogle Scholar
  40. Jovelin R, Yan YL, He X, Catchen J, Amores A, Canestro C, Yokoi H, Postlethwait JH (2009) Evolution of developmental regulation in the vertebrate FgfD subfamily. J Exp Zoolog B Mol Dev Evol (in press)Google Scholar
  41. Kanamoto T, Terada K, Yoshikawa H, Furukawa T (2006) Cloning and expression pattern of lbx3, a novel chick homeobox gene. Gene Expr Patterns 6(3):241–246CrossRefPubMedGoogle Scholar
  42. Kim CB, Amemiya C, Bailey W, Kawasaki K, Mezey J, Miller W, Minoshima S, Shimizu N, Wagner G, Ruddle F (2000) Hox cluster genomics in the horn shark, Heterodontus francisci. Proc Natl Acad Sci U S A 97(4):1655–1660CrossRefPubMedGoogle Scholar
  43. Kimura-Yoshida C, Kitajima K, Oda-Ishii I, Tian E, Suzuki M, Yamamoto M, Suzuki T, Kobayashi M, Aizawa S, Matsuo I (2004) Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. Development 131(1):57–71CrossRefPubMedGoogle Scholar
  44. Langenau D, Palomero T, Kanki J, Ferrando A, Zhou Y, Zon L, Look A (2002) Molecular cloning and developmental expression of Tlx (Hox11) genes in zebrafish (Danio rerio). Mech Dev 117(1–2):243–248CrossRefPubMedGoogle Scholar
  45. Larroux C, Fahey B, Degnan SM, Adamski M, Rokhsar DS, Degnan BM (2007) The NK homeobox gene cluster predates the origin of Hox genes. Curr Biol 17(8):706–710CrossRefPubMedGoogle Scholar
  46. Lee KH, Xu Q, Breitbart RE (1996) A new tinman-related gene, nkx2.7, anticipates the expression of nkx2.5 and nkx2.3 in zebrafish heart and pharyngeal endoderm. Dev Biol 180(2):722–731CrossRefPubMedGoogle Scholar
  47. Lettice L, Hecksher-Sorensen J, Hill R (2001) The role of Bapx1 (Nkx3.2) in the development and evolution of the axial skeleton. J Anat 199(Pt 1–2):181–187PubMedGoogle Scholar
  48. Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, Goode D, Elgar G, Hill RE, de Graaff E (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12(14):1725–1735CrossRefPubMedGoogle Scholar
  49. Logan C, Wingate RJ, McKay IJ, Lumsden A (1998) Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: markers of patterned connectivity. J Neurosci 18(14):5389–5402PubMedGoogle Scholar
  50. Luke GN, Castro LF, McLay K, Bird C, Coulson A, Holland PW (2003) Dispersal of NK homeobox gene clusters in amphioxus and humans. Proc Natl Acad Sci U S A 100(9):5292–5295CrossRefPubMedGoogle Scholar
  51. Martin BL, Harland RM (2006) A novel role for lbx1 in Xenopus hypaxial myogenesis. Development 133(2):195–208CrossRefPubMedGoogle Scholar
  52. Mazet F, Amemiya CT, Shimeld SM (2006) An ancient Fox gene cluster in bilaterian animals. Curr Biol 16(9):R314–R316CrossRefPubMedGoogle Scholar
  53. McEwen GK, Woolfe A, Goode D, Vavouri T, Callaway H, Elgar G (2006) Ancient duplicated conserved noncoding elements in vertebrates: a genomic and functional analysis. Genome Res 16(4):451–465CrossRefPubMedGoogle Scholar
  54. Mennerich D, Hoffmann S, Hadrys T, Arnold HH, Bober E (1999) Two highly related homeodomain proteins, Nkx5-1 and Nkx5-2, display different DNA binding specificities. Biol Chem 380(9):1041–1048CrossRefPubMedGoogle Scholar
  55. Moisan V, Bomgardner D, Tremblay JJ (2008) Expression of the Ladybird-like homeobox 2 transcription factor in the developing mouse testis and epididymis. BMC Dev Biol 8:22CrossRefPubMedGoogle Scholar
  56. Mulley JF, Chiu CH, Holland PW (2006) Breakup of a homeobox cluster after genome duplication in teleosts. Proc Natl Acad Sci U S A 103(27):10369–10372CrossRefPubMedGoogle Scholar
  57. Newman CS, Krieg PA (1999) The Xenopus bagpipe-related homeobox gene zampogna is expressed in the pharyngeal endoderm and the visceral musculature of the midgut. Dev Genes Evol 209(2):132–134CrossRefPubMedGoogle Scholar
  58. Nicolas S, Caubit X, Massacrier A, Cau P, Le Parco Y (1999) Two Nkx-3-related genes are expressed in the adult and regenerating central nervous system of the urodele Pleurodeles waltl. Dev Genet 24(3–4):319–328CrossRefPubMedGoogle Scholar
  59. Nishida W, Nakamura M, Mori S, Takahashi M, Ohkawa Y, Tadokoro S, Yoshida K, Hiwada K, Hayashi K, Sobue K (2002) A triad of serum response factor and the GATA and NK families governs the transcription of smooth and cardiac muscle genes. J Biol Chem 277(9):7308–7317CrossRefPubMedGoogle Scholar
  60. Pabst O, Schneider A, Brand T, Arnold HH (1997) The mouse Nkx2-3 homeodomain gene is expressed in gut mesenchyme during pre- and postnatal mouse development. Dev Dyn 209(1):29–35CrossRefPubMedGoogle Scholar
  61. Pascual-Anaya J, D'Aniello S, Garcia-Fernandez J (2008) Unexpectedly large number of conserved noncoding regions within the ancestral chordate Hox cluster. Dev Genes Evol 218(11–12):591–597CrossRefPubMedGoogle Scholar
  62. Patterson KD, Krieg PA (1999) Hox11-family genes XHox11 and XHox11L2 in xenopus: XHox11L2 expression is restricted to a subset of the primary sensory neurons. Dev Dyn 214(1):34–43CrossRefPubMedGoogle Scholar
  63. Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD, Plajzer-Frick I, Akiyama J, De Val S, Afzal V, Black BL, Couronne O, Eisen MB, Visel A, Rubin EM (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444(7118):499–502CrossRefPubMedGoogle Scholar
  64. Pollard SL, Holland PW (2000) Evidence for 14 homeobox gene clusters in human genome ancestry. Curr Biol 10(17):1059–1062CrossRefPubMedGoogle Scholar
  65. Postlethwait JH (2006) The zebrafish genome: a review and msx gene case study. Genome Dyn 2:183–197CrossRefPubMedGoogle Scholar
  66. Postlethwait JH (2007) The zebrafish genome in context: ohnologs gone missing. J Exp Zoolog B Mol Dev Evol 308(5):563–577CrossRefGoogle Scholar
  67. Qiu M, Shimamura K, Sussel L, Chen S, Rubenstein JL (1998) Control of anteroposterior and dorsoventral domains of Nkx-6.1 gene expression relative to other Nkx genes during vertebrate CNS development. Mech Dev 72(1–2):77–88CrossRefPubMedGoogle Scholar
  68. Richardson MK, Crooijmans RP, Groenen MA (2007) Sequencing and genomic annotation of the chicken (Gallus gallus) Hox clusters, and mapping of evolutionarily conserved regions. Cytogenet Genome Res 117(1–4):110–119CrossRefPubMedGoogle Scholar
  69. Rinkwitz-Brandt S, Arnold HH, Bober E (1996) Regionalized expression of Nkx5-1, Nkx5-2, Pax2 and sek genes during mouse inner ear development. Hear Res 99(1–2):129–138CrossRefPubMedGoogle Scholar
  70. Santini S, Boore JL, Meyer A (2003) Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res 13(6A):1111–1122CrossRefPubMedGoogle Scholar
  71. Saudemont A, Dray N, Hudry B, Le Gouar M, Vervoort M, Balavoine G (2008) Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis. Dev Biol 317(2):430–443CrossRefPubMedGoogle Scholar
  72. Schafer K, Braun T (1999) Early specification of limb muscle precursor cells by the homeobox gene Lbx1h. Nat Genet 23(2):213–216CrossRefPubMedGoogle Scholar
  73. Schorderet DF, Nichini O, Boisset G, Polok B, Tiab L, Mayeur H, Raji B, de la Houssaye G, Abitbol MM, Munier FL (2008) Mutation in the human homeobox gene NKX5-3 causes an oculo-auricular syndrome. Am J Hum Genet 82(5):1178–1184CrossRefPubMedGoogle Scholar
  74. Schubert FR, Dietrich S, Mootoosamy RC, Chapman SC, Lumsden A (2001) Lbx1 marks a subset of interneurons in chick hindbrain and spinal cord. Mech Dev 101(1–2):181–185CrossRefPubMedGoogle Scholar
  75. Shimeld SM, McKay IJ, Sharpe PT (1996) The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube. Mech Dev 55(2):201–210CrossRefPubMedGoogle Scholar
  76. Spitz F, Gonzalez F, Duboule D (2003) A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113(3):405–417CrossRefPubMedGoogle Scholar
  77. Svensson ME, Haas A (2005) Evolutionary innovation in the vertebrate jaw: a derived morphology in anuran tadpoles and its possible developmental origin. Bioessays 27(5):526–532CrossRefPubMedGoogle Scholar
  78. Takatori N, Butts T, Candiani S, Pestarino M, Ferrier DE, Saiga H, Holland PW (2008) Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Dev Genes Evol 218(11–12):579–590CrossRefPubMedGoogle Scholar
  79. Tanaka M, Kasahara H, Bartunkova S, Schinke M, Komuro I, Inagaki H, Lee Y, Lyons G, Izumo S (1998) Vertebrate homologs of tinman and bagpipe: roles of the homeobox genes in cardiovascular development. Dev Genet 22(3):239–249CrossRefPubMedGoogle Scholar
  80. Tang SJ, Hoodless PA, Lu Z, Breitman ML, McInnes RR, Wrana JL, Buchwald M (1998) The Tlx-2 homeobox gene is a downstream target of BMP signalling and is required for mouse mesoderm development. Development 125(10):1877–1887PubMedGoogle Scholar
  81. Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13(3):382–390CrossRefPubMedGoogle Scholar
  82. Thisse B, Heyer V, Lux A, Alunni V, Degrave A, Seiliez I, Kirchner J, Parkhill JP, Thisse C (2004) Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol 77:505–519CrossRefPubMedGoogle Scholar
  83. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882CrossRefPubMedGoogle Scholar
  84. Tschopp P, Tarchini B, Spitz F, Zakany J, Duboule D (2009) Uncoupling time and space in the collinear regulation of Hox genes. PLoS Genet 5(3):e1000398CrossRefPubMedGoogle Scholar
  85. Vavouri T, Walter K, Gilks WR, Lehner B, Elgar G (2007) Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biol 8(2):R15CrossRefPubMedGoogle Scholar
  86. Wang W, Lo P, Frasch M, Lufkin T (2000) Hmx: an evolutionary conserved homeobox gene family expressed in the developing nervous system in mice and Drosophila. Mech Dev 99(1–2):123–137CrossRefPubMedGoogle Scholar
  87. Wang W, Grimmer JF, Van De Water TR, Lufkin T (2004) Hmx2 and Hmx3 homeobox genes direct development of the murine inner ear and hypothalamus and can be functionally replaced by Drosophila Hmx. Dev Cell 7(3):439–453CrossRefPubMedGoogle Scholar
  88. Watanabe S, Kondo S, Hayasaka M, Hanaoka K (2007) Functional analysis of homeodomain-containing transcription factor Lbx1 in satellite cells of mouse skeletal muscle. J Cell Sci 120(Pt 23):4178–4187CrossRefPubMedGoogle Scholar
  89. Wittbrodt J, Meyer A, Schartl M (1998) More genes in fish? Bioessays 20:511–515CrossRefGoogle Scholar
  90. Woolfe A, Elgar G (2008) Organization of conserved elements near key developmental regulators in vertebrate genomes. Adv Genet 61:307–338CrossRefPubMedGoogle Scholar
  91. Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SF, North P, Callaway H, Kelly K, Walter K, Abnizova I, Gilks W, Edwards YJ, Cooke JE, Elgar G (2005) Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3(1):e7CrossRefPubMedGoogle Scholar
  92. Woolfe A, Goode DK, Cooke J, Callaway H, Smith S, Snell P, McEwen GK, Elgar G (2007) CONDOR: a database resource of developmentally associated conserved non-coding elements. BMC Dev Biol 7:100CrossRefPubMedGoogle Scholar
  93. Wotton KR, Mazet F, Shimeld SM (2008a) Expression of FoxC, FoxF, FoxL1, and FoxQ1 genes in the dogfish Scyliorhinus canicula defines ancient and derived roles for Fox genes in vertebrate development. Dev Dyn 237(6):1590–1603CrossRefGoogle Scholar
  94. Wotton KR, Shimeld SM (2006) Comparative genomics of vertebrate Fox cluster loci. BMC Genomics 7(1):271CrossRefPubMedGoogle Scholar
  95. Wotton KR, Weierud FK, Dietrich S, Lewis KE (2008b) Comparative genomics of Lbx loci reveals conservation of identical Lbx ohnologs in bony vertebrates. BMC Evol Biol 8:171CrossRefGoogle Scholar
  96. Yoshiura K, Leysens NJ, Reiter RS, Murray JC (1998) Cloning, characterization, and mapping of the mouse homeobox gene Hmx1. Genomics 50(1):61–68CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Karl R. Wotton
    • 1
    • 3
  • Frida K. Weierud
    • 2
  • José L. Juárez-Morales
    • 2
  • Lúcia E. Alvares
    • 1
    • 4
  • Susanne Dietrich
    • 1
    • 5
  • Katharine E. Lewis
    • 2
  1. 1.Department of Craniofacial DevelopmentKing’s College LondonLondonUK
  2. 2.Department of Physiology, Development and NeuroscienceCambridge UniversityCambridgeUK
  3. 3.EMBL/CRG Systems Biology Research UnitCentre for Genomic Regulation (CRG)BarcelonaSpain
  4. 4.Department of Histology and Embryology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
  5. 5.School of Biomedical and Health SciencesKing’s College LondonLondonUK

Personalised recommendations