Development Genes and Evolution

, Volume 218, Issue 10, pp 525–539 | Cite as

Embryonic development and metamorphosis of the scyphozoan Aurelia

  • David Yuan
  • Nagayasu Nakanishi
  • David K. Jacobs
  • Volker Hartenstein
Original Article


We investigated the development of Aurelia (Cnidaria, Scyphozoa) during embryogenesis and metamorphosis into a polyp, using antibody markers combined with confocal and transmission electron microscopy. Early embryos form actively proliferating coeloblastulae. Invagination is observed during gastrulation. In the planula, (1) the ectoderm is pseudostratified with densely packed nuclei arranged in a superficial and a deep stratum, (2) the aboral pole consists of elongated ectodermal cells with basally located nuclei forming an apical organ, which is previously only known from anthozoan planulae, (3) endodermal cells are large and highly vacuolated, and (4) FMRFamide-immunoreactive nerve cells are found exclusively in the ectoderm of the aboral region. During metamorphosis into a polyp, cells in the planula endoderm, but not in the ectoderm, become strongly caspase 3 immunoreactive, suggesting that the planula endoderm, in part or in its entirety, undergoes apoptosis during metamorphosis. The polyp endoderm seems to be derived from the planula ectoderm in Aurelia, implicating the occurrence of “secondary” gastrulation during early metamorphosis.


Cnidaria Scyphozoa Embryogenesis Planula Polyp 



We thank Mike Schaadt and Kiersten Darrow of the Cabrillo Marine aquarium, San Pedro, CA, USA for providing us with the Aurelia material. This work was supported by the UCLA Edwin W. Pauley fellowship (to N.N.) and the NASA Astrobiology Institute. We also thank anonymous reviewers for helpful comments on the manuscript.


  1. Ball EE, de Jong DM, Schierwater B, Shinzato C, Hayward DC, Miller DJ (2007) Implications of cnidarian gene expression patterns for the origins of bilaterality—is the glass half full or half empty? Integr Comp Biol 47:701–711CrossRefGoogle Scholar
  2. Berrill NJ (1949) Developmental analysis of scyphomedusae. Biol Rev Camb Philos Soc 24:393–410CrossRefGoogle Scholar
  3. Brusca RC, Brusca GJ (2003) Invertebrates. Sinauer, SunderlandGoogle Scholar
  4. Burnett AL, Davis LE, Ruffing FE (1966) A histological and ultrastructural study of germinal differentiation of interstitial cells arising from gland cells in hydra viridis. J Morphol 120:1–8PubMedCrossRefGoogle Scholar
  5. Chen JY, Oliveri P, Gao F, Dornbos SQ, Li CW, Bottjer DJ, Davidson EH (2002) Precambrian animal life: probable developmental and adult cnidarian forms from Southwest China. Dev Biol 248:182–196PubMedCrossRefGoogle Scholar
  6. Chia FS, Bickell L (1978) Mechanisms of larval settlement and the induction of settlement and metamorphosis: a review. In: Chia F-S, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, pp 1–12Google Scholar
  7. Chia FS, Crawford BJ (1973) Some observations on gametogenesis, larval development and substratum selection of sea pen Ptilosarcus gurneyi. Mar Biol 23:73–82CrossRefGoogle Scholar
  8. Chia FS, Koss R (1979) Fine-structural studies of the nervous-system and the apical organ in the planula larva of the sea-anemone Anthopleura elegantissima. J Morphol 160:275–297CrossRefGoogle Scholar
  9. Chourrout D, Delsuc F, Chourrout P, Edvardsen RB, Rentzsch F, Renfer E, Jensen MF, Zhu B, de Jong P, Steele RE et al (2006) Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442:684–687PubMedCrossRefGoogle Scholar
  10. Darling JA, Reitzel AR, Burton PM, Mazza ME, Ryan JF, Sullivan JC, Finnerty JR (2005) Rising starlet: the starlet sea anemone, Nematostella vectensis. Bioessays 27:211–221PubMedCrossRefGoogle Scholar
  11. Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200:92–96PubMedCrossRefGoogle Scholar
  12. de Jong DM, Hislop NR, Hayward DC, Reece-Hoyes JS, Pontynen PC, Ball EE, Miller DJ (2006) Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a ‘radiate’ animal, the anthozoan cnidarian Acropora millepora. Dev Biol 298:632–643PubMedCrossRefGoogle Scholar
  13. De Velasco B, Shen J, Go S, Hartenstein V (2004) Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Dev Biol 274:280–294PubMedCrossRefGoogle Scholar
  14. Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci USA 99:11025–11030PubMedCrossRefGoogle Scholar
  15. Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ (2004) Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science 304:1335–1337PubMedCrossRefGoogle Scholar
  16. Fioroni V (1979) Abändarungen des Gastrulationsverlaufs und ihre phylogenetische Bedeutung. In: Suewing R (ed) Erlanger Symp. Ontogenie Evolutionsforsch: Ontogenie unid Phylogenie. Parey, Hamburg, pp 100–119Google Scholar
  17. Frank U, Leitz T, Muller WA (2001) The hydroid Hydractinia: a versatile, informative cnidarian representative. Bioessays 23:963–971PubMedCrossRefGoogle Scholar
  18. Freeman G (1981) The role of polarity in the development of the hydrozoan planula larva. Wilhelm Roux Arch Dev Biol 190:168–184CrossRefGoogle Scholar
  19. Freeman G (1983) Experimental studies on embryogenesis in hydrozoans (Trachylina and Siphonophora) with direct development. Biol Bull 165:591–618CrossRefGoogle Scholar
  20. Galliot B, Schmid V (2002) Cnidarians as a model system for understanding evolution and regeneration. Int J Dev Biol 46:39–48PubMedGoogle Scholar
  21. Gershwin LA (2001) Systematics and biogeography of the jellyfish Aurelia labiata (Cnidaria: Scyphozoa). Biol Bull 201:104–119PubMedCrossRefGoogle Scholar
  22. Grimmelikhuijzen CJP (1983) Fmrfamide immunoreactivity is generally occurring in the nervous systems of coelenterates. Histochemistry 78:361–381PubMedCrossRefGoogle Scholar
  23. Groger H, Schmid V (2001) Larval development in Cnidaria: a connection to Bilateria? Genesis 29:110–114PubMedCrossRefGoogle Scholar
  24. Hyde JH (1894) Entwicklungsgeschichte einiger Scyphomedusen. Z Wiss Zool 58:531–565Google Scholar
  25. Ishii H, Takagi A (2003) Development time of planula larvae on the oral arms of the scyphomedusa Aurelia aurita. J Plankton Res 25:1447–1450CrossRefGoogle Scholar
  26. Kamm K, Schierwater B, Jakob W, Dellaporta SL, Miller DJ (2006) Axial patterning and diversification in the Cnidaria predate the Hox system. Curr Biol 16:920–926PubMedCrossRefGoogle Scholar
  27. Lacalli TC (1994) Apical organs, epithelial domains, and the origin of the chordate central-nervous-system. Am Zool 34:533–541Google Scholar
  28. Leitz T (1997) Induction of settlement and metamorphosis of Cnidarian larvae: signals and signal transduction. Invertebr Reprod Dev 31:109–122Google Scholar
  29. Leitz T, Lay M (1995) Metamorphosin-a is a neuropeptide. Roux Arch Dev Biol 204:276–279CrossRefGoogle Scholar
  30. Magie CR, Daly M, Martindale MQ (2007) Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression. Dev Biol 305:483–497PubMedCrossRefGoogle Scholar
  31. Marlow HQ, Martindale MQ (2007) Embryonic development in two species of scleractinian coral embryos: symbiodinium localization and mode of gastrulation. Evol Dev 9:355–367PubMedGoogle Scholar
  32. Martin VJ (1987) A morphological examination of gastrulation in a marine athecate hydrozoan. Biol Bull 173:324–334CrossRefGoogle Scholar
  33. Martin VJ (1991) Differentiation of the interstitial cell-line in hydrozoan planulae.1. Repopulation of epithelial planulae. Hydrobiologia 216:75–82CrossRefGoogle Scholar
  34. Martin VJ (2000) Reorganization of the nervous system during metamorphosis of a hydrozoan planula. Invertebr Biol 119:243–253Google Scholar
  35. Martin VJ, Chia FS (1982) Fine-structure of a scyphozoan planula, Cassiopeia xamachana. Biol Bull 163:320–328CrossRefGoogle Scholar
  36. Martin VJ, Koss R (2002) Phylum cnidaria. In: Young CM (ed) Atlas of marine invertebrate larvae. Academic, San Diego, pp 51–108Google Scholar
  37. Martin VJ, Littlefield CL, Archer WE, Bode HR (1997) Embryogenesis in hydra. Biol Bull 192:345–363PubMedCrossRefGoogle Scholar
  38. Martin V, Chia FS, Koss R (1983) A fine-structural study of metamorphosis of the hydrozoan Mitrocomella polydiademata. J Morphol 176:261–287CrossRefGoogle Scholar
  39. Martindale MQ (2004) The evolution of axial properties in the metazoa. Zool Sci 21:1233–1234Google Scholar
  40. Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ (2006) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci USA 103:11195–11200PubMedCrossRefGoogle Scholar
  41. Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci USA 98:9707–9712PubMedCrossRefGoogle Scholar
  42. Mergner H (1971) Chapter 1: Cnidaria. In: Reverberi G (ed) Experimental embryology of marine and fresh-water invertebrates. North Holland, Amsterdam, pp 1–84Google Scholar
  43. Miller DJ, Ball EE (2000) The coral Acropora: what it can contribute to our knowledge of metazoan evolution and the evolution of developmental processes. Bioessays 22:291–296PubMedCrossRefGoogle Scholar
  44. Muller WA, Wieker F, Eiben R (1976) Larval adhesion, releasing stimuli and metamorphosis. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum, New York, pp 339–346Google Scholar
  45. Nakanishi N, Yuan D, Jacobs DK, Hartenstein V (2008) Early development, pattern and reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa). Dev Genes Evol (this issue)Google Scholar
  46. Okada Y (1927) Note sur l’ontogenie de Carybdea rastonii Haacke. Bull Biol France et de la Belgique 2:241–248Google Scholar
  47. Otto JJ (1978) The settlement of Haliclystus planulae. In: Chia FS (ed) ME rice settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, pp 13–22Google Scholar
  48. Piatigorsky J, Kozmik Z (2004) Cubozoan jellyfish: an Evo/Devo model for eyes and other sensory systems. Int J Dev Biol 48:719–729PubMedCrossRefGoogle Scholar
  49. Plickert G (1989) Proportion-altering factor (Paf) stimulates nerve-cell formation in Hydractinia echinata. Cell Differ Dev 26:19–27PubMedCrossRefGoogle Scholar
  50. Plickert G, Kroiher M, Munck A (1988) Cell-proliferation and early differentiation during embryonic-development and metamorphosis of Hydractinia echinata. Development 103:795–803PubMedGoogle Scholar
  51. Rentzsch F, Anton R, Saina M, Hammerschmidt M, Holstein TW, Technau U (2006) Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. Dev Biol 296:375–387PubMedCrossRefGoogle Scholar
  52. Russell FS (1970) The medusae of the British Isles. Cambridge University Press, CambridgeGoogle Scholar
  53. Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS ONE 2:e153PubMedCrossRefGoogle Scholar
  54. Schmich J, Trepel S, Leitz T (1998) The role of GLWamides in metamorphosis of Hydractinia echinata. Dev Genes Evol 208:267–273PubMedCrossRefGoogle Scholar
  55. Schroth W, Jarms G, Streit B, Schierwater B (2002) Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evol Biol 2:1PubMedCrossRefGoogle Scholar
  56. Seipp S, Schmich J, Leitz T (2001) Morphogenesis of Cnidaria: programmed cell death during metamorphosis of Hydractinia echinata. Zoology (Jena) 103:13Google Scholar
  57. Seipp S, Wittig K, Stiening B, Bottger A, Leitz T (2006) Metamorphosis of Hydractinia echinata (Cnidaria) is caspase-dependent. Int J Dev Biol 50:63–70PubMedCrossRefGoogle Scholar
  58. Slack JMW, Holland PWH, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492PubMedCrossRefGoogle Scholar
  59. Slautterback DB, Fawcett DW (1959) The development of the cnidoblasts of hydra—an electron microscope study of cell differentiation. J Biophys Biochem Cytol 5:441–452PubMedCrossRefGoogle Scholar
  60. Steele RE (2002) Developmental signaling in Hydra: what does it take to build a “simple” animal? Dev Biol 248:199–219PubMedCrossRefGoogle Scholar
  61. Steinberg SN (1963) Regeneration of whole polyps from ectodermal fragments of scyphistoma larvae of Aurelia aurita. Biol Bull 124:337–343CrossRefGoogle Scholar
  62. Szymczyk KH, Freeman TA, Adams CS, Srinivas V, Steinbeck MJ (2006) Active caspase-3 is required for osteoclast differentiation. J Cell Physiol 209:836–844PubMedCrossRefGoogle Scholar
  63. Wallberg A, Thollesson M, Farris JS, Jondelius U (2004) The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 20:558–578CrossRefGoogle Scholar
  64. Weis V, Buss L (1987) Ultrastructure of metamorphosis in Hydractinia echinata. Postilla 199:1–20Google Scholar
  65. Widersten B (1968) On the morphology and development in some cnidarian larvae. Zool Bidrg Uppsala 37:139–182Google Scholar
  66. Widersten B (1973) On the morphology of actiniarian larvae. Zool Sci 2:119–124Google Scholar
  67. Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu RH, Martindale MQ (2003) An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426:446–450PubMedCrossRefGoogle Scholar
  68. Yanze N, Spring J, Schmidli C, Schmid V (2001) Conservation of Hox/ParaHox-related genes in the early development of a cnidarian. Dev Biol 236:89–98PubMedCrossRefGoogle Scholar
  69. Zwilling E (1963) Formation of endoderm from ectoderm in cordylophora. Biol Bull 124:368–378CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • David Yuan
    • 1
  • Nagayasu Nakanishi
    • 1
  • David K. Jacobs
    • 1
  • Volker Hartenstein
    • 2
    • 3
  1. 1.Department of Ecology and Evolutionary BiologyUCLALos AngelesUSA
  2. 2.Department of Molecular, Cellular, and Developmental BiologyUCLALos AngelesUSA
  3. 3.Department of Molecular, Cell, and Developmental BiologyUC Los AngelesLos AngelesUSA

Personalised recommendations