Development Genes and Evolution

, Volume 218, Issue 10, pp 511–524 | Cite as

Early development, pattern, and reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa)

  • Nagayasu Nakanishi
  • David Yuan
  • David K. Jacobs
  • Volker Hartenstein
Original Article


We examined the development of the nervous system in Aurelia (Cnidaria, Scyphozoa) from the early planula to the polyp stage using confocal and transmission electron microscopy. Fluorescently labeled anti-FMRFamide, antitaurine, and antityrosinated tubulin antibodies were used to visualize the nervous system. The first detectable FMRFamide-like immunoreactivity occurs in a narrow circumferential belt toward the anterior/aboral end of the ectoderm in the early planula. As the planula matures, the FMRFamide-immunoreactive cells send horizontal processes (i.e., neurites) basally along the longitudinal axis. Neurites extend both anteriorly/aborally and posteriorly/orally, but the preference is for anterior neurite extension, and neurites converge to form a plexus at the aboral/anterior end at the base of the ectoderm. In the mature planula, a subset of cells in the apical organ at the anterior/aboral pole begins to show FMRFamide-like and taurine-like immunoreactivity, suggesting a sensory function of the apical organ. During metamorphosis, FMRFamide-like immunoreactivity diminishes in the ectoderm but begins to occur in the degenerating primary endoderm, indicating that degenerating FMRFamide-immunoreactive neurons are taken up by the primary endoderm. FMRFamide-like expression reappears in the ectoderm of the oral disc and the tentacle anlagen of the growing polyp, indicating metamorphosis-associated restructuring of the nervous system. These observations are discussed in the context of metazoan nervous system evolution.


Cnidaria Scyphozoa Neurogenesis Planula Polyp 



We thank Mike Schaadt and Kiersten Darrow of the Cabrillo Marine aquarium, San Pedro, CA, for providing us with the Aurelia material. This work was supported by the UCLA Edwin W. Pauley fellowship (to N.N.) and the NASA Astrobiology Institute. We also thank anonymous reviewers for helping us to improve the clarity of the manuscript.


  1. Berking S (1988) Taurine found to stabilize the larval state is released upon induction of metamorphosis in the hydrozon hydractinia. Roux’s Arch Dev Biol 197:321–327CrossRefGoogle Scholar
  2. Borchiellini C, Manuel M, Alivon E, Boury-Esnault N, Vacelet J, Le Parco Y (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14:171–179CrossRefGoogle Scholar
  3. Brusca RC, Brusca GJ (2003) Invertebrates. Sinauer, MAGoogle Scholar
  4. Campbell RD, Josephson RK, Schwab WE, Rushforth NB (1976) Excitability of nerve-free hydra. Nature 262:388–390PubMedCrossRefGoogle Scholar
  5. Chia FS, Bickell L (1978) Mechanisms of larval settlement and the induction of settlement and metamorphosis: a review. In: Chia F-S, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, pp 1–12Google Scholar
  6. Chia FS, Koss R (1979) Fine-structural studies of the nervous-system and the apical organ in the planula larva of the sea-anemone Anthopleura elegantissima. J Morph 160:275–298Google Scholar
  7. Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97–115PubMedCrossRefGoogle Scholar
  8. Davis LE (1974) Ultrastructural studies of development of nerves in hydra. Am Zool 14:551–573Google Scholar
  9. de Jong DM, Hislop NR, Hayward DC, Reece-Hoyes JS, Pontynen PC, Ball EE, Miller DJ (2006) Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a ‘radiate’ animal, the anthozoan cnidarian Acropora millepora. Dev Biol 298:632–643PubMedCrossRefGoogle Scholar
  10. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749PubMedCrossRefGoogle Scholar
  11. Eakin RM (1982) Continuity and diversity in photoreceptors. In: Westfall JA (ed) Visual cells in evolution. Raven, New York, pp 91–105Google Scholar
  12. Epstein DJ, Vekemans M, Gros P (1991) Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67:767–774PubMedCrossRefGoogle Scholar
  13. Grimmelikhuijzen CJP (1983) FMRFamide immunoreactivity is generally occurring in the nervous systems of coelenterates. Histochemistry 78:361–381PubMedCrossRefGoogle Scholar
  14. Groger H, Schmid V (2001) Larval development in Cnidaria: a connection to Bilateria? Genesis 29:110–114PubMedCrossRefGoogle Scholar
  15. Halanych KM (2004) The new view of animal phylogeny. Ann Rev Ecol Evol Syst 35:229–256CrossRefGoogle Scholar
  16. Harris W, Hartenstein V (1998) Determination of neural fate. In: Bloom F, Landis S, Roberts J, Squire L, Zigmond M (eds) Fundamental neuroscience. Academic, New York, pp 481–518Google Scholar
  17. Hatten M, Heintz N (1998) Neurogenesis and migration. In: Bloom F, Landis S, Roberts J, Squire L, Zigmond M (eds) Fundamental neuroscience. Academic, New York, pp 451–480Google Scholar
  18. Hayakawa E, Fujisawa C, Fujisawa T (2004) Involvement of Hydra achaete–scute gene CnASH in the differentiation pathway of sensory neurons in the tentacles. Dev Genes Evol 214:486–492PubMedGoogle Scholar
  19. Hayward DC, Catmull J, Reece-Hoyes JS, Berghammer H, Dodd H, Hann SJ, Miller DJ, Ball EE (2001) Gene structure and larval expression of cnox-2Am from the coral Acropora millepora. Dev Genes Evol 211:10–19PubMedCrossRefGoogle Scholar
  20. Hernandez-Nicaise M-L (1991) Ctenophora. In: Harrison FW (ed) Microscopic anatomy of invertebrates, vol 2. Wiley-Liss, New York, pp 359–418Google Scholar
  21. Jacobs DK, Nakanishi N, Yuan D, Camara A, Nichols SA, Hartenstein V (2007) Evolution of sensory structures in basal metazoa. Integr Comp Biol 47:712–723CrossRefGoogle Scholar
  22. Jones WC (1962) Is there a nervous system in sponges. Biol Rev Camb Philos Soc 37:1–50PubMedCrossRefGoogle Scholar
  23. Katsukura Y, David CN, Grimmelikhuijzen CJP, Sugiyama T (2003) Inhibition of metamorphosis by RFamide neuropeptides in planula larvae of Hydractinia echinata. Dev Genes Evol 213:579–586PubMedCrossRefGoogle Scholar
  24. Kim J, Kim W, Cunningham CW (1999) A new perspective on lower metazoan relationships from 18S rDNA sequences. Mol Biol Evol 16:423–427PubMedGoogle Scholar
  25. Korn H (1966) Zur ontogenetischen Differenzierung der Coelenteratengewebe (Polyp-Stadium) unter besonderer Berücksichtigung des Nervensystems. Z Morph Ökol Tiere 57:1–118CrossRefGoogle Scholar
  26. Leitz T, Lay M (1995) Metamorphosin-a is a neuropeptide. Roux’s Arch Dev Biol 204:276–279CrossRefGoogle Scholar
  27. Leitz T, Morand K, Mann M (1994) Metamorphosin A: a novel peptide controlling development of the lower metazoan Hydractinia echinata (Coelenterata, Hydrozoa). Dev Biol 163:440–446PubMedCrossRefGoogle Scholar
  28. Lentz TL (1965) Fine structure of differentiating interstitial cells in hydra. Z Zellforsch Mikrosk Anat 67:547–560PubMedCrossRefGoogle Scholar
  29. Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invertebr Biol 123:23–42Google Scholar
  30. Martin VJ (1992) Characterization of a RFamide-positive subset of ganglionic cells in the hydrozoan planular nerve net. Cell Tissue Res 269:431–438PubMedCrossRefGoogle Scholar
  31. Martin VJ (2000) Reorganization of the nervous system during metamorphosis of a hydrozoan planula. Invertebr Biol 119:243–253Google Scholar
  32. Martin VJ, Thomas MB (1980) Nerve elements in the planula of the hydrozoan Pennaria tiarella. J Morphol 166:27–36CrossRefGoogle Scholar
  33. Martin VJ, Thomas MB (1981) The origin of the nervous-system in Pennaria tiarella, as revealed by treatment with colchicine. Biol Bull 160:303–310CrossRefGoogle Scholar
  34. Martin VJ, Chia FS (1982) Fine-structure of a scyphozoan planula, Cassiopeia xamachana. Biol Bull 163:320–328CrossRefGoogle Scholar
  35. Martin V, Chia FS, Koss R (1983) A fine-structural study of metamorphosis of the hydrozoan Mitrocomella polydiademata. J Morphol 176:261–287CrossRefGoogle Scholar
  36. Martindale MQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6:917–927PubMedCrossRefGoogle Scholar
  37. Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci U S A 98:9707–9712PubMedCrossRefGoogle Scholar
  38. Nordstrom K, Wallen R, Seymour J, Nilsson D (2003) A simple visual system without neurons in jellyfish larvae. Proc R Soc Lond B Biol Sci 270:2349–2354CrossRefGoogle Scholar
  39. Pavansde M (1974) Coordination in sponges—foundations of integration. Am Zool 14:895–903Google Scholar
  40. Plickert G (1989) Proportion-altering factor (Paf) stimulates nerve-cell formation in Hydractinia echinata. Cell Differ Dev 26:19–27PubMedCrossRefGoogle Scholar
  41. Plickert G, Schneider B (2004) Neuropeptides and photic behavior in Cnidaria. Hydrobiologia 530:49–57CrossRefGoogle Scholar
  42. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94PubMedCrossRefGoogle Scholar
  43. Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang I-F, Tidor B, Degnan BM, Oakley TH, Kosik KS (2007) A post-synaptic scaffold at the origin of the animal kingdom. PLoS ONE 2:e506PubMedCrossRefGoogle Scholar
  44. Salvini-Plawen L, Splechtna H (1979) On the origin and evolution of lower Metazoa. Zool Syst Evol Forsch 16:40–88CrossRefGoogle Scholar
  45. Schmich J, Trepel S, Leitz T (1998) The role of GLWamides in metamorphosis of Hydractinia echinata. Dev Genes Evol 208:267–273PubMedCrossRefGoogle Scholar
  46. Skeath JB, Zhang Y, Holmgren R, Carroll SB, Doe CQ (1995) Specification of neuroblast identity in the Drosophila embryonic central nervous system by gooseberry-distal. Nature 376:427–430PubMedCrossRefGoogle Scholar
  47. Technau U, Rudd S, Maxwell P, Gordon PM, Saina M, Grasso LC, Hayward DC, Sensen CW, Saint R, Holstein TW et al (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21:633–639PubMedCrossRefGoogle Scholar
  48. Thomas M, Edwards N (1991) Cnidaria: Hydrozoa. In: Harrison FW (ed) Microscopic anatomy of invertebrates, vol. 2. Wiley-Liss, New York, pp 91–183Google Scholar
  49. Thomas MB, Freeman G, Martin VJ (1987) The embryonic origin of neurosensory cells and the role of nerve-cells in metamorphosis in Phialidium gregarium (Cnidaria, Hydrozoa). Int J Invertebr Reprod Dev 11:265–285Google Scholar
  50. Wallberg A, Thollesson M, Farris JS, Jondelius U (2004) The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 20:558–578CrossRefGoogle Scholar
  51. Weis V, Buss L (1987) Ultrastructure of metamorphosis in Hydractinia echinata. Postilla 199:1–20Google Scholar
  52. Weis VM, Keene DR, Buss LW (1985) Biology of hydractiniid hydroids. 4. Ultrastructure of the planula of Hydractinia echinata. Biol Bull 168:403–418CrossRefGoogle Scholar
  53. Widersten B (1968) On the morphology and development in some cnidarian larvae. Zool Bidr Upps 37:139–182Google Scholar
  54. Wolpert L (2007) Principles of development. Oxford University Press, Oxford, New YorkGoogle Scholar
  55. Yuan D, Nakanishi N, Jacobs DK, Hartenstein V (2008) Embryonic development and metamorphosis of the scyphozoan Aurelia. Dev Genes Evol 218. doi: 10.1007/s00427-008-0254-8

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nagayasu Nakanishi
    • 1
  • David Yuan
    • 1
  • David K. Jacobs
    • 1
  • Volker Hartenstein
    • 2
  1. 1.Department of Ecology and Evolutionary BiologyUCLALos AngelesUSA
  2. 2.Department of Molecular, Cellular and Developmental BiologyUCLALos AngelesUSA

Personalised recommendations