Development Genes and Evolution

, Volume 218, Issue 11–12, pp 629–638 | Cite as

The Fox genes of Branchiostoma floridae

  • Jr-Kai Yu
  • Francoise Mazet
  • Yen-Ta Chen
  • Song-Wei Huang
  • Kuo-Chen Jung
  • Sebastian M. Shimeld
Original Article

Abstract

The Fox genes are united by encoding a fork head domain, a deoxyribonucleic acid (DNA)-binding domain of the winged-helix type that marks these genes as encoding transcription factors. Vertebrate Fox genes are classified into 23 subclasses named from FoxA to FoxS. We have surveyed the genome of the amphioxus Branchiostoma floridae, identifying 32 distinct Fox genes representing 21 of these 23 subclasses. The missing subclasses, FoxR and FoxS, are specific to vertebrates, and in addition, B. floridae has one further group, FoxAB, that is not found in vertebrates. Hence, we conclude B. floridae has maintained a high level of Fox gene diversity. Expressed sequence tag and complementary DNA sequence data support the expression of 23 genes. Several linkages between B. floridae Fox genes were noted, including some that have evolved relatively recently via tandem duplication in the amphioxus lineage and others that are more ancient.

Keywords

Amphioxus Branchiostoma Fox Fork head 

Notes

Acknowledgements

FM and SMS acknowledge the support of the BBSRC. FM is supported by a Springboard Fellowship from the University of Reading. Work in the JKY laboratory is supported by start-up funding from Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan, Republic of China.

Supplementary material

427_2008_229_MOESM1_ESM.doc (103 kb)
ESM 1 Alignments used in phylogenetic analyses. Please see main text, Table 1 and figures for full gene models and accession numbers (DOC 103 KB)

References

  1. Clark KL, Halay ED, Lai E, Burley SK (1993) Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364:412–420PubMedCrossRefGoogle Scholar
  2. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  3. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  4. Kaestner KH, Knochel W, Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14:142–146PubMedGoogle Scholar
  5. Larroux C, Fahey B, Liubicich D, Hinman VF, Gauthier M, Gongora M, Green K, Worheide G, Leys SP, Degnan BM (2006) Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol Dev 8:150–173PubMedCrossRefGoogle Scholar
  6. Lee HH, Frasch M (2004) Survey of forkhead domain encoding genes in the Drosophila genome: Classification and embryonic expression patterns. Dev Dyn 229:357–366PubMedCrossRefGoogle Scholar
  7. Magie CR, Pang K, Martindale MQ (2005) Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol 215:618–630PubMedCrossRefGoogle Scholar
  8. Mazet F, Shimeld SM (2002) The evolution of chordate neural segmentation. Dev Biol 251:258–270PubMedCrossRefGoogle Scholar
  9. Mazet F, Yu JK, Liberles DA, Holland LZ, Shimeld SM (2003) Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene 316:79–89PubMedCrossRefGoogle Scholar
  10. Mazet F, Amemiya CT, Shimeld SM (2006) An ancient Fox gene cluster in bilaterian animals. Curr Biol 16:R314–R316PubMedCrossRefGoogle Scholar
  11. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  12. Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez E, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov V, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PWH, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature (in press). doi: 10.1038/nature06967
  13. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  14. Satou Y, Kawashima T, Kohara Y, Satoh N (2003) Large scale EST analyses in Ciona intestinalis: its application as Northern blot analyses. Dev Genes Evol 213:314–318PubMedCrossRefGoogle Scholar
  15. Schlake T, Schorpp M, Boehm T (2000) Formation of regulator/target gene relationships during evolution. Gene 256:29–34PubMedCrossRefGoogle Scholar
  16. Shimeld SM (1997) Characterisation of amphioxus HNF-3 genes: conserved expression in the notochord and floor plate. Dev Biol 183:74–85PubMedCrossRefGoogle Scholar
  17. Terazawa K, Satoh N (1997) Formation of the chordamesoderm in the amphioxus embryo: analysis of Brachyury and fork head/HNF-3 genes. Dev Genes Evol 207:1–11CrossRefGoogle Scholar
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  19. Toresson H, Martinez-Barbera JP, Bardsley A, Caubit X, Krauss S (1998) Conservation of BF-1 expression in amphioxus and zebrafish suggests evolutionary ancestry of anterior cell types that contribute to the vertebrate telencephalon. Dev Genes Evol 208:431–439.PubMedCrossRefGoogle Scholar
  20. Tu Q, Brown CT, Davidson EH, Oliveri P (2006) Sea urchin Forkhead gene family: phylogeny and embryonic expression. Dev Biol 300:49–62PubMedCrossRefGoogle Scholar
  21. Weigel D, Jackle H (1990) The fork head domain: a novel DNA binding motif of eukaryotic transcription factors? Cell 63:455–456PubMedCrossRefGoogle Scholar
  22. Wotton KR, Shimeld SM (2006) Comparative genomics of vertebrate fox cluster loci. BMC Genomics 7:271–278PubMedCrossRefGoogle Scholar
  23. Yagi K, Satou Y, Mazet F, Shimeld SM, Degnan B, Rokhsar D, Levine M, Kohara Y, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis III. Genes for Fox, ETS, nuclear receptors and NFkappaB. Dev Genes Evol 213:235–244PubMedCrossRefGoogle Scholar
  24. Yu JK, Holland LZ, Jamrich M, Blitz IL, Holland ND (2002a) AmphiFoxE4, an amphioxus winged helix/forkhead gene encoding a protein closely related to vertebrate thyroid transcription factor-2: expression during pharyngeal development. Evol Dev 4:9–15PubMedCrossRefGoogle Scholar
  25. Yu JK, Holland ND, Holland LZ (2002b) An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution. Dev Dyn 225:289–297PubMedCrossRefGoogle Scholar
  26. Yu JK, Holland ND, Holland LZ (2003) AmphiFoxQ2, a novel winged helix/forkhead gene, exclusively marks the anterior end of the amphioxus embryo. Dev Genes Evol 213:102–105PubMedGoogle Scholar
  27. Yu JK, Wang MC, Shin-i T, Kohara Y, Holland LZ, Satoh N, Satou Y (2008) A cDNA resource for the cephalochordate amphioxus Branchiostoma floridae. Dev Genes Evol (in press)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jr-Kai Yu
    • 1
  • Francoise Mazet
    • 2
  • Yen-Ta Chen
    • 1
  • Song-Wei Huang
    • 1
  • Kuo-Chen Jung
    • 1
  • Sebastian M. Shimeld
    • 3
  1. 1.Institute of Cellular and Organismic BiologyAcademia SinicaTaipeiRepublic of China
  2. 2.School of Biological Sciences, AMS BuildingUniversity of ReadingReadingUK
  3. 3.Department of ZoologyUniversity of OxfordOxfordUK

Personalised recommendations