Development Genes and Evolution

, Volume 217, Issue 11–12, pp 771–782 | Cite as

Lens gene expression analysis reveals downregulation of the anti-apoptotic chaperone αA-crystallin during cavefish eye degeneration

  • Allen G. Strickler
  • Mardi S. Byerly
  • William R. Jeffery
Original Article


We have conducted a survey of the expression patterns of five genes encoding three different classes of major lens proteins during eye degeneration in the blind cavefish Astyanax mexicanus. This species consists of two forms, an eyed surface-dwelling form (surface fish) and a blind cave-dwelling (cavefish) form. Cavefish form an optic primordium with a lens vesicle and optic cup. In contrast to surface fish, however, the cavefish lens does not differentiate fiber cells and undergoes massive apoptosis. The genes encoding the lens intrinsic membrane proteins MIP and MP19 and the divergent βB1- and γM2-crystallins are expressed during cavefish lens development, although their levels are reduced because of a smaller lens, and the spatial distribution of their transcripts is modified because of the lack of differentiated fiber cells. In contrast, the αA-crystallin gene, which encodes a heat shock protein-related chaperone with antiapoptotic activity, is substantially downregulated in the developing cavefish lens. The results suggest that suppression of αA-crystallin antiapoptotic activity may be involved in cavefish eye degeneration.


Cavefish Lens apoptosis MIP MP19 βB1-Crystallin γM2-Crystallin αA-Crystallin 


  1. Alunni A, Menuet A, Candal E, Pénigault J-B, Jeffery WR, Rétaux S (2007) Developmental mechanisms for retinal degeneration in the blind cavefish Astyanax mexicanus. J Comp Neurol 505:221–233PubMedCrossRefGoogle Scholar
  2. Barr T (1968) Cave ecology and the evolution of troglobites. Evol Biol 2:35–102Google Scholar
  3. Behrens M, Langecker TG, Wilkens H, Schmale H (1997) Comparative analysis of Pax-6 sequence and expression in eye development of the blind cave fish Astyanax fasciatus and its epigean conspecific. Mol Biol Evol 14:299–308PubMedGoogle Scholar
  4. Behrens M, Wilkens H, Schmale H (1998) Cloning of the αA-crystallin genes of the blind cave form and the epigean form of Astyanax fasciatus: a comparative analysis of structure, expression and evolutionary conservation. Gene 216:319–326PubMedCrossRefGoogle Scholar
  5. Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingby C, Tardieu A (2004) Aging and vision; structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86:407–485PubMedCrossRefGoogle Scholar
  6. Borowsky R, Wilkens H (2002) Mapping a cave fish genome: polygenic systems and regressive evolution. J Heredity 93:19–21CrossRefGoogle Scholar
  7. Chepelinsky AB, Piatigorsky J, Pisano MM, Dubin RA, Wistow G, Limioco TI, Klement JF, Jaworski CJ (1991) Lens protein gene expression: α-crystallins and MIP. Lens Eye Toxic Res 8:319–344PubMedGoogle Scholar
  8. Church RL, Wang J (1993) The human lens fiber-cell intrinsic membrane protein MP19 gene: isolation and sequence analysis. Curr Eye Res 12:1057–1065PubMedCrossRefGoogle Scholar
  9. Civil A, Svan Genesen ST, Lubsen NH (2002) c-Maf, the γD crystallin Maf-responsive element and growth factor regulation. Nucleic Acids Res 30:975–982PubMedCrossRefGoogle Scholar
  10. Cui WS, Tomarev I, Piatigorsky J, Chepelinsky AB, Duncan MK (2004) Mafs, Prox1, and Pax6 can regulate chicken β1 crystallin gene expression. J Biol Chem 279:11088–11095PubMedCrossRefGoogle Scholar
  11. Culver D (1982) Cave life: evolution and ecology. Harvard University Press, Cambridge, MAGoogle Scholar
  12. Cvekl AC, Sax M, Bresnick EM, Piatigorsky J (1994) A complex array of positive and negative elements regulates the chick αA-crystallin genes: involvement of Pax-6, USF, CREB and/or CREM, and AP-1 proteins. Mol Cell Biol 14:7363–7376PubMedGoogle Scholar
  13. Dahm R (1999) Lens fibre cell differentiation—a link with apoptosis? Ophthalmic Res 31:163–183PubMedCrossRefGoogle Scholar
  14. Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J (1984) The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39:49–59PubMedCrossRefGoogle Scholar
  15. Goishi K, Shimizu A, Njarro G, Watanabe S, Rogers R, Zon LI, Kragsbrun M (2006) αA crystallin expression prevents γ-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens. Development 133:2585–2593PubMedCrossRefGoogle Scholar
  16. Graw J (1997) The crystallins: genes, proteins and diseases. Biol Chem 378:1331–1348PubMedGoogle Scholar
  17. Hendriks W, Luenisson J, Bloemendal H, Nevo E, De Jong WW (1987) The lens protein αA crystallin in the blind mole rat Spalax ehrenbergi: evolutionary change and functional constraints. Proc Natl Acad Sci USA 84:5320–5324PubMedCrossRefGoogle Scholar
  18. Hooven TA, Yamamoto Y, Jeffery WR (2004) Blind cavefish and heat shock protein chaperones: a novel role for hsp90α in lens apoptosis. Int J Dev Biol 48:731–738PubMedCrossRefGoogle Scholar
  19. Jeffery WR (2001) Cavefish as a model system in evolutionary developmental biology. Dev Biol 231:1–12PubMedCrossRefGoogle Scholar
  20. Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Heredity 96:185–196CrossRefGoogle Scholar
  21. Jeffery WR, Martasian DP (1998) Evolution of eye degeneration in the cavefish Astyanax: apoptosis and the pax6 gene. Am Zool 38:685–696Google Scholar
  22. Jeffery WR, Strickler AG, Guiney S, Heyser D, Tomarev S (2000) Prox1 in eye degeneration and sensory organ compensation during development and evolution of the cavefish Astyanax. Dev Genes Evol 210:223–230PubMedCrossRefGoogle Scholar
  23. Kamachi YS, Sockanathan S, Liu Q, Breitman M, Lovell-Bradge R, Kondoh H (1995) Involvement of SOX proteins in lens-specific activation of crystallin genes. EMBO J 14:3510–3519PubMedGoogle Scholar
  24. Kumar NM, Jarvis LJ, Tenbroek E, Louis CF (1993) Cloning and expression of a major rat lens membrane protein, MP19. Exp Eye Res 56:35–43PubMedCrossRefGoogle Scholar
  25. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245PubMedCrossRefGoogle Scholar
  26. Lang RA (2004) Pathways regulating lens induction in the mouse. Int J Dev Biol 48:783–791PubMedCrossRefGoogle Scholar
  27. Langecker TG, Schamle H, Wilkens H (1993) Transcription of the opsin gene in degenerate eyes of cave dwelling Astyanax fasciatus (Teleostei, Characidae) and its conspecific ancestor during early ontogeny. Cell Tissue Res 273:183–192CrossRefGoogle Scholar
  28. Liu S, Tao Y, Xiao X (2007) Small heat shock protein αB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochim Biophys Res Commun 354:109–114CrossRefGoogle Scholar
  29. Mao Y-W, Liu J, Xiang H, Li DW (2004) Human αA and αB crystallins bind to Bax and Bcl-X (S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11:512–526PubMedCrossRefGoogle Scholar
  30. Menuet A, Alunni A, Joly J-S, Jeffery WR, Rétaux S (2007) Shh overexpression in Astyanax cavefish: multiple consequences on forebrain development and evolution. Development 134:845–855PubMedCrossRefGoogle Scholar
  31. Mikhailov AT, Simirskii VN, Aleinikova KS, Gorgolyuk NA (1997) Developmental patterns of crystallin expression during lens fiber differentiation in amphibians. Int J Dev Biol 41:883–891PubMedGoogle Scholar
  32. Morozov V, Wawrousek EF (2005) Caspase-dependent secondary lens fiber cell disintegration in αA- and αB- crystallin double knockout mice. Development 133:813–821CrossRefGoogle Scholar
  33. Posner M, Kantorow M, Horwitz J (1999) Cloning, sequencing and differential expression of αB-crystallin in the zebrafish, Danio rerio. Biochim Biophys Acta 1447:271–277PubMedGoogle Scholar
  34. Protas M, Conrad M, Gross JB, Tabin C, Borowsky R (2007) Regressive evolution in the Mexican cave tetra, Astyanax mexicanus. Curr Biol 17:462–464CrossRefGoogle Scholar
  35. Quax-Jeuken Y, Bruisten S, Bloemendahl H, de Jong WW, Nevo E (1984) Evolution of crystallins: expression of lens-specific proteins in the blind mammals mole (Talpa europaea) and mole rat (Spalax ehrenbergi). Mol Biol Evol 2:279–288Google Scholar
  36. Reza HM, Urano A, Shimada M, Yasuda K (2007) Sequential and combinatorial roles of maf family genes define proper lens development. Mol Vis 13:18–30PubMedGoogle Scholar
  37. Runkle S, Hill J, Kantorow M, Horwitz J, Posner M (2002) Sequence and spatial expression of zebrafish (Danio rerio) αA-crystallin. Mol Vis 8:45–50PubMedGoogle Scholar
  38. Sanyal S, Jansen HG, De Grip WG, Nevo E, De Jong WW (1990) The eye of the blind mole rat, Spalax ehrenbergi: rudiment with hidden function. Invest Ophthalmol Vis Sci 31:1398–1404PubMedGoogle Scholar
  39. Shi X, Bosenko DV, Zinkevich NS, Foley S, Hyde DR, Semina EV, Vihtelic TS (2005) Zebrafish pitx3 is necessary for normal lens and retinal development. Mech Dev 122:513–527PubMedCrossRefGoogle Scholar
  40. Shiels A, Bassnett S (1996) Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat Genet 12:212–215PubMedCrossRefGoogle Scholar
  41. Soares D, Yamamoto Y, Strickler AG, Jeffery WR (2004) The lens has a specific influence on optic nerve and tectum development in the blind cavefish Astyanax. Dev Neurosci 26:308–317PubMedCrossRefGoogle Scholar
  42. Strickler AG, Yamamoto Y, Jeffery WR (2001) Early and late changes in Pax6 expression accompany eye degeneration during cavefish development. Dev Genes Evol 211:138–144PubMedCrossRefGoogle Scholar
  43. Strickler AG, Famuditimi K, Jeffery WR (2002) Retinal homeobox genes and the role of cell proliferation in cavefish eye degeneration. Int J Dev Biol 46:285–294PubMedGoogle Scholar
  44. Strickler AG, Yamamoto Y, Jeffery WR (2007) The lens controls cell survival in the retina: evidence from the blind cavefish Astyanax. Dev Biol 311:512–523PubMedGoogle Scholar
  45. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  46. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by genomic averaging of multiple internal control genes. Genome Biol 18:R34–1–R34–11Google Scholar
  47. Wilkens H (1988) Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces). Evol Biol 23:271–367Google Scholar
  48. Wride MA (1996) Cellular and molecular features of lens differentiation: a review of recent advances. Differentiation 61:77–93PubMedCrossRefGoogle Scholar
  49. Yamamoto Y (2004) Cavefish. Curr Biol 14:R943PubMedCrossRefGoogle Scholar
  50. Yamamoto Y, Jeffery WR (2000) Central role for the lens in cavefish eye degeneration. Science 289:631–633PubMedCrossRefGoogle Scholar
  51. Yamamoto Y, Stock DW, Jeffery WR (2004) Hedgehog signalling controls eye degeneration in blind cavefish. Nature 431:844–847PubMedCrossRefGoogle Scholar
  52. Yang Y, Stopa T, Golestaneh N, Wang Y, Wu K, Chauhan BK, Gao CY, Cveklova K, Duncan MK, Pastell RG, Chepelinsky AB, Skoultchi AI, Cvekl A (2006) Regulation of αA-crystallin via Pax6, cMaf, CREB and a broad domain of lens-specific chomatin. EMBO J 25:2107–2118PubMedCrossRefGoogle Scholar
  53. Yoshida T, Yasuda K (2002) Characterization of the chicken L-maf, MafB, and c-Maf in crystallin gene regulation and lens differentiation. Genes Cells 7:693–706PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Allen G. Strickler
    • 1
  • Mardi S. Byerly
    • 2
  • William R. Jeffery
    • 1
  1. 1.Department of BiologyUniversity of MarylandCollege ParkUSA
  2. 2.Graduate Program in Neuroscience and Cognitive ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations