Advertisement

Development Genes and Evolution

, Volume 218, Issue 3–4, pp 193–202 | Cite as

Tribolium Wnts: evidence for a larger repertoire in insects with overlapping expression patterns that suggest multiple redundant functions in embryogenesis

  • Renata Bolognesi
  • Anke Beermann
  • Laila Farzana
  • Nadine Wittkopp
  • Rebekka Lutz
  • Guillaume Balavoine
  • Susan J. Brown
  • Reinhard Schröder
Original Article

Abstract

wingless (wg)/Wnt family genes encode secreted glycoproteins that function as signalling molecules in the development of vertebrates as well as invertebrates. In a survey of Wnt family genes in the newly sequenced Tribolium genome, we found a total of nine Wnt genes. In addition to wg or Wnt1, Tribolium contains orthologs of the vertebrate Wnt5–7 and Wnt9–11 genes. As in Drosophila, Wnt1, Wnt6 and Wnt10 are clustered in the genome. Comparative genomics indicates that Wnt9 is also a conserved member of this cluster in several insects for which genome sequence is available. One of the Tribolium Wnt genes appears to be a member of the WntA family, members of which have been identified in Anopheles and other invertebrates but not in Drosophila or vertebrates. Careful phylogenetic examination suggests an Apis Wnt gene, previously identified as a Wnt4 homolog, is also a member of the WntA family. The ninth Tribolium Wnt gene is related to the diverged Drosophila WntD gene, both of which phylogenetically group with Wnt8 genes. Some of the Tribolium Wnt genes display multiple overlapping expression patterns, suggesting that they may be functionally redundant in segmentation, brain, appendage and hindgut development. In contrast, the unique expression patterns of Wnt5, Wnt7 and Wnt11 in developing appendages likely indicate novel functions.

Keywords

Tribolium Wnt gene family Evolution Genome Insect 

Notes

Acknowledgements

The work of R. Bolognesi, L. Farzana and S. Brown is supported by NIH grant HD29594. A. Beermann and R. Schröder thank R. Reuter for continuous support, T. Mader for technical assistance and the German Research Council (DFG) for funding (SCHR 4435/3-1/3/2).

References

  1. Angelini DR, Kaufman TC (2005) Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development. Dev Biol 283:409–423PubMedCrossRefGoogle Scholar
  2. Baker NE (1988) Localization of transcripts from the wingless gene in whole Drosophila embryos. Development 103:289–298PubMedGoogle Scholar
  3. Brown SJ, Parrish JK, Beeman RW, Denell RE (1997) Molecular characterization and embryonic expression of the even-skipped ortholog of Tribolium castaneum. Mech Dev 61:165–173PubMedCrossRefGoogle Scholar
  4. Choe CP, Miller SC, Brown SJ (2006) A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proc Natl Acad Sci USA 103:6560–6564PubMedCrossRefGoogle Scholar
  5. Cohen ED, Mariol M, Wallace RMH, Weyers J, Kamberov YG, Pradel J, Wilder EL (2002) DWnt4. regulates cell movement and focal adhesion kinase during Drosophila ovarian morphogenesis. Dev Cell 2:437–448PubMedCrossRefGoogle Scholar
  6. Dearden PK, Wilson MJ, Sablan L, Osborn PW, Havler M, McNaughton E, Kimura K, Milshina NV, Hasselmann M, Gempe T, Schioett M, Brown SJ, Elsik CG, Holland PWH, Kadowaki T, Beye M (2006) Patterns of conservation and change in honey bee developmental genes. Genome Res 16:1376–1384PubMedCrossRefGoogle Scholar
  7. Fradkin LG, Noordermeer JN, Nusse R (1995) The Drosophila Wnt protein DWnt-3 is a secreted glycoprotein localized on the axon tracts of the embryonic CNS. Dev Biol 168:202–213PubMedCrossRefGoogle Scholar
  8. Ganguly A, Jiang J, Ip T (2005) Drosophila. WntD is a target and an inhibitor of the orsal/Twist/Snail network in the gastrulating embryo. Development 132:3419–3429PubMedCrossRefGoogle Scholar
  9. Gordon MD, Dionne MS, Schneider DS, Nusse R (2005) WntD is a feedback inhibitor od Dorsal/NF-kB in Drosophila development and immunity. Nature 437:746–749PubMedCrossRefGoogle Scholar
  10. Grimaldi D, Engel MS (2005) Evolution of the Insects. Cambridge Univ. Press, CambridgeGoogle Scholar
  11. Ingham PW, Hidalgo A (1993) Regulation of wingless transcription in the Drosophila embryo. Development 117:283–291PubMedGoogle Scholar
  12. Janson K, Cohen ED, Wilder EL (2001) Expression of DWnt6, DWnt10, and DFz4 during Drosophila development. Mech Dev 103:117–120PubMedCrossRefGoogle Scholar
  13. Klingler M, Gergen JP (1993) Regulation of runt transcription by Drosophila segmentation genes. Mech Dev 43:3–19PubMedCrossRefGoogle Scholar
  14. Kozopas KM, Samos CH, Nusse R (1998) DWnt-2. , a Drosophila Wnt gene required for the development of the male reproductive tract, specifies a sexually dimorphic cell fate. Genes Dev 12:1155–1165PubMedCrossRefGoogle Scholar
  15. Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, Haeseler AV, Hobmayer B, Martindale MQ, Holstein TW (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160PubMedCrossRefGoogle Scholar
  16. Miyawaki K, Mito T, Sarashina U, Zhang H, Shinmyo Y, Ohuchi H, Noji S (2004) Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev 121:119–130PubMedCrossRefGoogle Scholar
  17. Nagy L, Carroll S (1994) Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367:460–463PubMedCrossRefGoogle Scholar
  18. Nusse R (2001) An ancient cluster of Wnt paralogues. Trends Genet 17:443PubMedCrossRefGoogle Scholar
  19. Nusse R, Varmus HE (1992) Wnt. genes. Cell 69:1073–1087PubMedCrossRefGoogle Scholar
  20. Prud’homme B, Lartillot N, Balavoine G, Adoutte A, Vervoort M (2002) Phylogenetic analysis of the Wnt gene family: insights from lophotrochozoan members. Curr Biol 12:1395–1400PubMedCrossRefGoogle Scholar
  21. Russell J, Gennissen A, Russe N (1992) Isolation and expression of two novel Wnt/wingless gene homologues in Drosophila. Development 115:475–485PubMedGoogle Scholar
  22. Savard J, Marques-Souza H, Aranda M, Tautz D (2006) A segmentation gene in Tribolium produces a polycistronic mRNA that codes for multiple conserved peptides. Cell 126:559–569PubMedCrossRefGoogle Scholar
  23. Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969Google Scholar
  24. Sullivan JC, Ryan JF, Mullikin JC, Finnerty JR (2007) Conserved and novel Wnt clusters in the basal eumetazoan Nematostella vectensis. Dev Genes Evol 217:235–239PubMedCrossRefGoogle Scholar
  25. Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Renata Bolognesi
    • 1
    • 2
  • Anke Beermann
    • 3
  • Laila Farzana
    • 1
  • Nadine Wittkopp
    • 3
  • Rebekka Lutz
    • 3
  • Guillaume Balavoine
    • 4
  • Susan J. Brown
    • 1
    • 2
  • Reinhard Schröder
    • 3
  1. 1.Division of Biology, Ackert HallKansas State UniversityManhattanUSA
  2. 2.K-State Arthropod Genomics CenterKansas State UniversityManhattanUSA
  3. 3.Department of Animal GeneticsInstitute for Cell BiologyTübingenGermany
  4. 4.CNRS-CGMGif-sur-yvette CedexFrance

Personalised recommendations