Development Genes and Evolution

, Volume 217, Issue 4, pp 315–322 | Cite as

Evolution of Hox3 and ftz in arthropods: insights from the crustacean Daphnia pulex

  • Daniel PapillonEmail author
  • Maximilian J. Telford
Short Communication


The Drosophila melanogaster genes zerknüllt (zen) and fushi tarazu (ftz) are members of the Hox gene family whose roles have changed significantly in the insect lineage and thus provide an opportunity to study the mechanisms underlying the functional evolution of Hox proteins. We have studied the expression of orthologs of zen (DpuHox3) and ftz (Dpuftz) in the crustacean Daphnia pulex (Branchiopoda), both of which show a dynamic expression pattern. DpuHox3 is expressed in a complex pattern in early embryogenesis, with the most anterior boundary of expression lying at the anterior limit of the second antennal segment as well as a ring of expression around the embryo. In later embryos, DpuHox3 expression is restricted to the mesoderm of mandibular limb buds. Dpuftz is first expressed in a ring around the embryo following the posterior limit of the mandibular segment. Later, Dpuftz is restricted to the posterior part of the mandibular segment. This is the first report of expression of a Hox3 ortholog in a crustacean, and together with Dpuftz data, the results presented here show that Hox3 and ftz have retained a Hox-like expression pattern in crustaceans. This is in accordance with the proposed model of Hox3 and ftz evolution in arthropods and allows a more precise pinpointing of the loss of ftz “Hox-like behaviour”: in the lineage between the Branchiopoda and the basal insect Thysanura.


Hox3 Zen ftz Arthropoda Daphnia pulex 



D.P. thanks Y Shiga for sharing the WMISH protocol, Y. Perez and B. Barascud for the advice on the husbandry, K. Panfilio for sharing data and members of the lab for thoughtful discussions. D.P. is supported by the EU Marie Curie Research Training Network Zoonet.


  1. Abzhanov A, Popadic A, Kaufman TC (1999) Chelicerate Hox genes and the homology of arthropod segments. Evolut Develop 1:77–89CrossRefGoogle Scholar
  2. Alonso CR, Maxton-Kuechenmeister J, Akam M (2001) Evolution of Ftz protein function in insects. Curr Biol 11:1473–1478PubMedCrossRefGoogle Scholar
  3. Brown SJ, Hilgenfeld RB, Denell RE (1994) The beetle Tribolium castaneum has a fushi tarazu homolog expressed in stripes during segmentation. Proc Natl Acad Sci USA 91:12922–12926PubMedCrossRefGoogle Scholar
  4. Choe CP, Miller SC, Brown SJ (2006) A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proc Natl Acad Sci USA 103:6560–6564PubMedCrossRefGoogle Scholar
  5. Damen WG, Tautz D (1998) A Hox class 3 orthologue from the spider Cupiennius salei is expressed in a Hox-gene-like fashion. Dev Genes Evol 208:586–590PubMedCrossRefGoogle Scholar
  6. Damen WG, Janssen R, Prpic NM (2005) Pair rule gene orthologs in spider segmentation. Evolut Develop 7:618–628CrossRefGoogle Scholar
  7. Dawes R, Dawson I, Falciani F, Tear G, Akam M (1994) Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120:1561–1572PubMedGoogle Scholar
  8. Doe CQ, Hiromi Y, Gehring WJ, Goodman CS (1998) Expression and function of the segmentation gene fushi tarazu during Drosophila neurogenesis. Science 239:170–175CrossRefGoogle Scholar
  9. Falciani F, Hausdorf B, Schroder R, Akam M, Tautz D, Denell R, Brown S (1996) Class 3 Hox genes in insects and the origin of zen. Proc Natl Acad Sci USA 93:8479–8484PubMedCrossRefGoogle Scholar
  10. Glenner H, Thomsen PF, Hebsgaard MB, Sorensen MV, Willerslev E (2006) Evolution. The origin of insects. Science 314:1883–1884PubMedCrossRefGoogle Scholar
  11. Hughes CL, Kaufman TC (2002a) Exploring the myriapod body plan:expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238PubMedGoogle Scholar
  12. Hughes CL, Kaufman TC (2002b) Hox genes and the evolution of the arthropod body plan. Evolut Develop 4:459–499CrossRefGoogle Scholar
  13. Hughes CL, Liu PZ, Kaufman TC (2004) Expression patterns of the rogue Hox genes Hox3/zen and fushi tarazu in the apterygote insect Thermobia domestica. Evolut Develop 6:393–401CrossRefGoogle Scholar
  14. Irvine SQ, Martindale MQ (2000) Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological bounderies. Dev Biol 217:333–351PubMedCrossRefGoogle Scholar
  15. Janssen R, Damen WG (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216:451–465PubMedCrossRefGoogle Scholar
  16. Kaufman TC, Seeger MA, Olsen G (1990) Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. Adv Genet 27:309–336PubMedCrossRefGoogle Scholar
  17. Kotov AA, Boikova OS (2001) Study of the late embryogenesis of Daphnia (Anomopoda, ‘Cladocera’, Branchiopoda) and a comparison of development in Anomopoda and Ctenopoda. Hydrobiologia 442:127–143CrossRefGoogle Scholar
  18. Kulakova M, Bakalenko N, Novikova E, Cook CE, Eliseeva E, Steinmets PR, Kostyuchenko RP, Dondua A, Arendt D, Akam M, Andreeva T (2007) Hox gene expresion in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 217:39–54PubMedCrossRefGoogle Scholar
  19. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570PubMedCrossRefGoogle Scholar
  20. Löhr U, Pick L (2005) Cofactor-interaction motifs and the cooption of a homeotic Hox protein into the segmentation pathway of Drosophila melanogaster. Curr Biol 15:643–649PubMedCrossRefGoogle Scholar
  21. Löhr U, Yussa M, Pick L (2001) Drosophila fushi tarazu:a gene on the border of homeotic function. Curr Biol 11:1403–1412PubMedCrossRefGoogle Scholar
  22. Mallatt J, Giribet G (2006) Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa:37 more arthropods and a kinorhynch. Mol Phylogenet Evol 40:772–799PubMedCrossRefGoogle Scholar
  23. Mouchel-vielh E, Blin M, Rigolot C, Deutsch JS (2002) Expression of a homologue of the fushi tarazu (ftz) gene in a cirripede crustacean. Evolut Develop 4:76–85CrossRefGoogle Scholar
  24. Panfilio KA, Akam M (2007) A comparison of Hox3 and Zen protein coding sequences in taxa that span the Hox3/zen divergence. Dev Genes Evol 217 (in press) DOI  10.1007/s00427-007-0133-8
  25. Panfilio KA, Liu PZ, Akam M, Kaufman TC (2006) Oncopeltus fasciatus zen is essential for serosal tissue function in katatrepsis. Dev Biol 292:226–243PubMedCrossRefGoogle Scholar
  26. Shiga Y, Yasumoto R, Yamagata H, Hayashi S (2002) Evolving role of Antennapedia protein in arthropod limb patterning. Development 129:3555–3561PubMedGoogle Scholar
  27. Stauber M, Prell A, Schmidt-Ott U (2002) A single Hox3 gene with composite bicoid and zerknullt expression characteristics in non-Cyclorrhaphan flies. Proc Natl Acad Sci USA. 99:274–279PubMedCrossRefGoogle Scholar
  28. Stuart JJ, Brown SJ, Beeman RW, Denell RE (1991) A deficiency of the homeotic complex of the beetle Tribolium. Nature 350:72–74PubMedCrossRefGoogle Scholar
  29. Telford MJ (2000) Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan. Lox5 Curr Biol 10:349–352CrossRefGoogle Scholar
  30. Telford MJ, Thomas RH (1998) Of mites and zen:expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Dev Genes Evol 208:591–594PubMedCrossRefGoogle Scholar
  31. Wakimoto BT, Turner FR, Kaufman TC (1984) Defects in embryogenesis in mutants associated with the antennapedia gene complex of Drosophila melanogaster. Dev Biol 102:147–172PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Biology, Darwin buildingUniversity College of LondonLondonUK

Personalised recommendations