Advertisement

Development Genes and Evolution

, Volume 217, Issue 1, pp 39–54 | Cite as

Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa)

  • Milana Kulakova
  • Nadezhda Bakalenko
  • Elena Novikova
  • Charles E. Cook
  • Elena Eliseeva
  • Patrick R. H. Steinmetz
  • Roman P. Kostyuchenko
  • Archil Dondua
  • Detlev Arendt
  • Michael Akam
  • Tatiana AndreevaEmail author
Original Article

Abstract

The bilaterian animals are divided into three great branches: the Deuterostomia, Ecdysozoa, and Lophotrochozoa. The evolution of developmental mechanisms is less studied in the Lophotrochozoa than in the other two clades. We have studied the expression of Hox genes during larval development of two lophotrochozoans, the polychaete annelids Nereis virens and Platynereis dumerilii. As reported previously, the Hox cluster of N. virens consists of at least 11 genes (de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G, Nature, 399:772–776, 1999; Andreeva TF, Cook C, Korchagina NM, Akam M, Dondua AK, Ontogenez 32:225–233, 2001); we have also cloned nine Hox genes of P. dumerilii. Hox genes are mainly expressed in the descendants of the 2d blastomere, which form the integument of segments, ventral neural ganglia, pre-pygidial growth zone, and the pygidial lobe. Patterns of expression are similar for orthologous genes of both nereids. In Nereis, Hox2, and Hox3 are activated before the blastopore closure, while Hox1 and Hox4 are activated just after this. Hox5 and Post2 are first active during the metatrochophore stage, and Hox7, Lox4, and Lox2 at the late nectochaete stage only. During larval stages, Hox genes are expressed in staggered domains in the developing segments and pygidial lobe. The pattern of expression of Hox cluster genes suggests their involvement in the vectorial regionalization of the larval body along the antero-posterior axis. Hox gene expression in nereids conforms to the canonical patterns postulated for the two other evolutionary branches of the Bilateria, the Ecdysozoa and the Deuterostomia, thus supporting the evolutionary conservatism of the function of Hox genes in development.

Keywords

Hox gene expression Larval development Nereis virens Platynereis dumerilii Annelida Polychaeta Lophotrochozoa 

Notes

Acknowledgements

The authors thank Mrs. Zh. E. Fedorova for assistance in establishing nereid cultures and the group, “Chromas,” in the Biological Institute of Saint-Petersburg University for allowing the use of the core facility equipment. We also thank Dr. T. Bosch and Dr. E. Davidson for the careful reading of the manuscript and for the useful remarks. Thanks are due to A. Nesterenko for the help with the paper preparation. This work was supported by the Russian Foundation for Basic Research Grant no. 06-04-49654-a and by the Biotechnology and Biological Sciences Research Council of the UK.

References

  1. Ackermann C, Dorresteijn A, Fischer A (2005) Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta). J Morphol 266:258–280PubMedCrossRefGoogle Scholar
  2. Akam M (1995) Hox genes and the evolution of diverse body plans. Philos Trans R Soc Lond B Biol Sci 349:313–319PubMedCrossRefGoogle Scholar
  3. Akam M (1998) Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int J Dev Biol 42:445–451PubMedGoogle Scholar
  4. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493PubMedCrossRefGoogle Scholar
  5. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Oxford, PergamonGoogle Scholar
  6. Andreeva TF, Cook C, Korchagina NM, Akam M, Dondua AK (2001) Cloning and analysis of structural organization of Hox genes in the polychaete Nereis virens. Ontogenez 32:225–233PubMedGoogle Scholar
  7. Arendt D (2003) Spiralians in the limelight. Genome Biol 5:303PubMedCrossRefGoogle Scholar
  8. Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871PubMedCrossRefGoogle Scholar
  9. Bleidorn C, Vogt L, Bartolomaeus T (2003) New insight into polychaete phylogeny (Annelida) inferred from 18S rDNA sequences. Mol Phyl Evol 29:279–288CrossRefGoogle Scholar
  10. Brusca RC, Brusca GJ (2002) Invertebrates. Sinauer, MassachusettsGoogle Scholar
  11. Callaerts P, Lee PN, Hartmann B, Farfan C, Choy DW, Ikeo K, Fischbach KF, Gehring WJ, de Couet HG (2002) Hox genes in the sepiolid squid Euprymna scolopes: implications for the evolution of complex body plans. Proc Natl Acad Sci USA 99:2088–2093PubMedCrossRefGoogle Scholar
  12. Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to Diversity: Molecular genetics and the evolution of animal design. Blackwell Science, Malden MAGoogle Scholar
  13. Cho SJ, Cho PY, Lee MS, Hur, SY, Lee JA, Kim SK, Koh KS, Na YE, Choo JK, Kim CB, Park SC (2003) Hox genes from the earthworm Perionyx excavatus. Dev Genes Evol 213:207–210PubMedGoogle Scholar
  14. Davidson EH (2001) Genomic regulatory systems: development and evolution. Academic, San DiegoGoogle Scholar
  15. Davidson EH, Peterson KJ, Cameron RA (1995) Origin of bilaterian body plans: evolution of developmental regulatory mechanisms. Science 24:1319–1325CrossRefGoogle Scholar
  16. de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776PubMedCrossRefGoogle Scholar
  17. Dondua AK (1975) Effect of actinomycin D and sibiromycin on the embryonic and larval development of Nereis virens. Ontogenez 6:475–484PubMedGoogle Scholar
  18. Erwin DH, Davidson EH (2002) The last common bilaterian ancestor. Development 129:3021–3032PubMedGoogle Scholar
  19. Ferrier DEK, Minguillon C (2003) Evolution of the Hox/ParaHox gene clusters. Int J Dev Biol 47:605–611PubMedGoogle Scholar
  20. Fischer A, Dorresteijn A (2004) The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. Bioessays 26:314–325PubMedCrossRefGoogle Scholar
  21. Hall KA, Hutchings PA, Colgan DJ (2004) Further phylogenetic studies of the Polychaeta using 18S rDNA sequence data. J Mar Biol Assoc UK 84:949–960CrossRefGoogle Scholar
  22. Hauenschild C, Fischer A (1969) Platynereis dumerilii. Grosses Zoologisches Praktikum, Heft 10b. Gustav Fischer Verlag, StuttgartGoogle Scholar
  23. Hinman VF, O’Brien EK, Richards GS, Degnan BM (2003) Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol Dev 5:508–521PubMedCrossRefGoogle Scholar
  24. Irvine SQ, Martindale MQ (2000) Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological boundaries. Dev Biol 217:333–351PubMedCrossRefGoogle Scholar
  25. Irvine SQ, Martindale MQ (2001) Comparative analysis of Hox gene expression in the polychaete Chaetopteus: implications for the evolution of body plan regionalization. Am Zool 41:640–651CrossRefGoogle Scholar
  26. Irvine SQ, Chaga O, Martindale MQ (1999) Larval ontogenetic stages of Chaetopterus: developmental heterochrony in the evolution of chaetopterid polychaetes. Biol Bull 197:319–331PubMedCrossRefGoogle Scholar
  27. Iwanoff PP (1928) Die Entwicklung der Larvalsegmente bei den Anneliden. Z Morphol Okol Tiere 10:62–161CrossRefGoogle Scholar
  28. Kmita-Cunisse M, Loosli F, Bierne J, Gehring WJ (1998) Homeobox genes in the ribbonworm Lineus sanguineus: evolutionary implications. Proc Natl Acad Sci USA 95:3030–3035PubMedCrossRefGoogle Scholar
  29. Kourakis MJ, Master VA, Lokhorst DK, Nardelli-Haefliger D, Wedeen CJ, Martindale MQ, Shankland M (1997) Conserved anterior boundaries of Hox gene expression in the central nervous system of the leech Helobdella. Dev Biol 190:284–300PubMedCrossRefGoogle Scholar
  30. Kulakova MA, Kostyuchenko RP, Andreeva TF, Dondua AK (2002) The Abdominal-B-like gene expression during larval development of Nereis virens (Polychaeta). Mech Dev 115:177–179PubMedCrossRefGoogle Scholar
  31. Lee PN, Callaerts P, de Couet HG, Martindale MQ (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature 424:1061–1065PubMedCrossRefGoogle Scholar
  32. Nardelli-Haefliger D, Shankland M (1992) Lox2, a putative leech segment identity gene, is expressed in the same segmental domain in different stem cell lineages. Development 116:697–710PubMedGoogle Scholar
  33. Nardelli-Haefliger D, Bruce AE, Shankland M (1994) An axial domain of HOM/Hox gene expression is formed by morphogenetic alignment of independently specified cell lineages in the leech Helobdella. Development 120:1839–1849PubMedGoogle Scholar
  34. Nielsen C (2004) Trochophore larvae: cell-lineages, ciliary bands and body regions. 1. Annelida and mollusca. J Exp Zool (Mol Dev Evol) 302:35–68Google Scholar
  35. Nogi T, Watanabe K (2001) Position-specific and non-colinear expression of the planarian posterior (Abdominal-B-like) gene. Dev Growth Differ 43:177–184PubMedCrossRefGoogle Scholar
  36. Peterson KJ, Davidson EH (2000) Regulatory evolution and the origin of the bilaterians. Proc Natl Acad Sci USA 97:4430–4433PubMedCrossRefGoogle Scholar
  37. Peterson KJ, Cameron RA, Davidson EH (2000a) Bilaterian origins: significance of new experimental observations. Dev Biol 219:1–17PubMedCrossRefGoogle Scholar
  38. Peterson KJ, Irvine SQ, Cameron RA, Davidson EH (2000b) Quantitative assessment of Hox complex expression in the indirect development of the polychaete annelid Chaetopterus sp. Proc Natl Acad Sci USA 97:4487–4492PubMedCrossRefGoogle Scholar
  39. Philippe H, Lartillot N, Brinkmann H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253PubMedCrossRefGoogle Scholar
  40. Raible F, Tessmar-Raible K, Osoegawa K, Wincker P, Jubin C, Balavoine G, Ferrier D, Benes V, de Jong P, Weissenbach J, Bork P, Arendt D (2005) Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 310:1325–1326PubMedCrossRefGoogle Scholar
  41. Seo HC, Edvardsen RB, Maelandi AD, Bjordal M, Jensen MF, Hansen A, Flaat M, Weissenbach J, Lehrach H, Wincker P, Reinhardt R, Chourrout D (2004) Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431:67–71PubMedCrossRefGoogle Scholar
  42. Seaver EC, Kanashige LM (2006) Expression of “segmentation” genes during larval and juvenile development in the polychaetes Capitella sp. and H. elegans. Dev Biol 289:179–194PubMedCrossRefGoogle Scholar
  43. Seaver EC, Thamm K, Hill SD (2005) Growth patterns during segmentation in the two polychaete annelids, Capitella sp. I and Hydroides elegans: comparisons at distinct life history stages. Evol Dev 7:312–326PubMedCrossRefGoogle Scholar
  44. Shankland M, Seaver EC (2000) Evolution of the bilaterian body plan: what have we learned from annelid? Proc Natl Acad Sci USA 97:4434–4437PubMedCrossRefGoogle Scholar
  45. Slack JMW, Holland PWH, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492PubMedCrossRefGoogle Scholar
  46. Telford MJ (2000) Turning Hox “signatures” into synapomorphies. Evol Dev 2:360–364PubMedCrossRefGoogle Scholar
  47. Tessmar-Raible K, Arendt D (2003) Emerging systems: between vertebrates and arthropods, the Lophotrochozoa. Curr Opin Genet Dev 13:331–340PubMedCrossRefGoogle Scholar
  48. Ushakov PV (1972) Polychaete worms. 1. Fauna of SSSR. Nauka, LeningradGoogle Scholar
  49. Wilson EB (1892) The cell lineage of Nereis. J Morph 6:361–480CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Milana Kulakova
    • 1
  • Nadezhda Bakalenko
    • 1
  • Elena Novikova
    • 1
  • Charles E. Cook
    • 3
  • Elena Eliseeva
    • 1
  • Patrick R. H. Steinmetz
    • 4
  • Roman P. Kostyuchenko
    • 2
  • Archil Dondua
    • 2
  • Detlev Arendt
    • 4
  • Michael Akam
    • 3
  • Tatiana Andreeva
    • 1
    Email author
  1. 1.Laboratory of Experimental EmbryologyBiological Institute of State University of St. PetersburgStarii Petergoff, St. PetersburgRussia
  2. 2.Department of EmbryologyState University of St. PetersburgSt. PetersburgRussia
  3. 3.Department and Museum of ZoologyUniversity of CambridgeCambridgeUK
  4. 4.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations