Skip to main content
Log in

Polarised expression of FoxB and FoxQ2 genes during development of the hydrozoan Clytia hemisphaerica

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

We have characterised the expression of four genes coding for Forkhead box-containing (‘Fox’) transcription factors identified from the hydrozoan (Leptomedusa) Clytia hemisphaerica. Phylogenetic analyses including all available non-bilaterian Fox sequences placed these genes in subfamilies B, Q2 (two genes) and O, and indicated that at least 17 Fox subfamilies were present in the common cnidarian/bilaterian ancestor, with multiple subsequent losses in cnidarian lineages. Chordate FoxB and FoxQ2A subfamily genes show polarised expression in early embryos. Correspondingly, Clytia CheFoxB expression was localised around the gastrulation site (future oral pole) at blastula and gastrula stages, with CheFoxQ2a expressed in a complementary aboral domain, maintained through larval development. Distinct later expression domains were observed for CheFoxB in the larval endoderm region, and in the statocyst, gonad and tentacle bulb of the medusa. A second Clytia FoxQ2 gene, CheFoxQ2b, not expressed in the embryo, larva or polyp, was detected uniquely in the gonads of the medusa. In contrast, CheFoxO, whose sequence indicates regulation by the PI3-Kinase/PKB signalling pathway consistent with known roles in bilaterian developmental regulation, was detected throughout the Clytia life cycle. CheFoxO expression was enhanced in regions associated with growth control including larval poles, gonad and the margin of the medusa bell. These results support the idea that an early embryonic patterning system involving FoxB and FoxQ2 family genes has been evolutionary conserved and indicate that Fox family genes have also acquired distinct roles during other phases of the hydrozoan life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426

    Article  PubMed  CAS  Google Scholar 

  • Adell T, Muller WE (2004) Isolation and characterization of five Fox (Forkhead) genes from the sponge Suberites domuncula. Gene 334:35–46

    Article  PubMed  CAS  Google Scholar 

  • Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC (1998) Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics 47:187–1991

    Article  PubMed  CAS  Google Scholar 

  • Ang SL, Wierda A, Wong D, Stevens KA, Cascio S, Rossant J, Zaret KS (1993) The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119:1301–1315

    PubMed  CAS  Google Scholar 

  • Ball EE, Hayward DC, Saint R, Miller DJ (2004) A simple plan—cnidarians and the origins of developmental mechanisms. Nat Rev Genet 5:567–577

    Article  PubMed  CAS  Google Scholar 

  • Bodo F, Bouillon J (1968) Etude histologique du développement embryonnaire de quelques Hydroméduses de Roscoff. Cah Biol Mar 9:69–79

    Google Scholar 

  • Bouillon J (1993) Classe des hydrozoaires. In: Grassé P-P (ed) Traité de zoologie. Masson, Paris pp 29–416

    Google Scholar 

  • Burgering BM, Kops GJ (2002) Cell cycle and death control: long live forkheads. Trends Biochem Sci 27:352–360

    Article  PubMed  CAS  Google Scholar 

  • Byrum CA (2001) An analysis of hydrozoan gastrulation by unipolar ingression. Dev Biol 240:627–640

    Article  PubMed  CAS  Google Scholar 

  • Carlsson P, Mahlapuu M (2002) Forkhead transcription factors: key players in development and metabolism. Dev Biol 250:1–23

    Article  PubMed  CAS  Google Scholar 

  • Carre D, Carre C (2000) Origin of germ cells, sex determination, and sex inversion in medusae of the genus Clytia (Hydrozoa, leptomedusae): the influence of temperature. J Exp Zool 287:233–242

    Article  PubMed  CAS  Google Scholar 

  • Collins AG (1998) Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. Proc Natl Acad Sci USA 95:15458–15463

    Article  PubMed  CAS  Google Scholar 

  • Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Cnidarian phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97–110

    Article  PubMed  Google Scholar 

  • Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ (2004) Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science 304:1335–1337

    Article  PubMed  CAS  Google Scholar 

  • Freeman G (1981) The cleavage initiation site establishes the posterior pole of the hydrozoan embryo. Wilhelm Roux’s Archives 190:123–125

    Article  Google Scholar 

  • Freeman G (2005) The effect of larval age on developmental changes in the polyp prepattern of a hydrozoan planula. Zoology 108:55–73

    Article  PubMed  Google Scholar 

  • Fritzenwanker JH, Saina M, Technau U (2004) Analysis of forkhead and snail expression reveals epithelial–mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol 275:389–402

    Article  PubMed  CAS  Google Scholar 

  • Gamse JT, Sive H (2001) Early anteroposterior division of the presumptive neurectoderm in Xenopus. Mech Dev 104:21–36

    Article  PubMed  CAS  Google Scholar 

  • Groger H, Schmid V (2001) Larval development in Cnidaria: a connection to Bilateria? Genesis 29:110–114

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–W559

    Article  PubMed  CAS  Google Scholar 

  • Hacker U, Grossniklaus U, Gehring WJ, Jackle H (1992) Developmentally regulated Drosophila gene family encoding the fork head domain. Proc Natl Acad Sci USA 89:8754–8758

    Article  PubMed  CAS  Google Scholar 

  • Honegger TG, Achermann J, Littlefield RJ, Baenninger R, Tardent P (1980) Light-controlled spawning in Phialidium hemisphaericum (Leptomedusae). In: Tardent P, Tardent R (eds) Developmental and cellular biology of coelenterates. Proceedings of the IV international coelenterate conference. Elsevier/N. Holland Biomedical, Amsterdam, pp 83–88

    Google Scholar 

  • Hope IA, Mounsey A, Bauer P, Aslam S (2003) The forkhead gene family of Caenorhabditis elegans. Gene 304:43–55

    Article  PubMed  CAS  Google Scholar 

  • Hosaka T, Biggs WH 3rd, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci USA 101:2975–2980

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Jager M, Queinnec E, Houliston E, Manuel M (2006) Expansion of the SOX gene family predated the emergence of the Bilateria. Mol Phylogenet Evol 39:468–477

    Article  PubMed  CAS  Google Scholar 

  • Kaestner KH, Knochel W, Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14:142–146

    PubMed  CAS  Google Scholar 

  • Kamm K, Schierwater B, Jakob W, Dellaporta SL, Miller DJ (2006) Axial patterning and diversification in the Cnidaria Predate the Hox system. Curr Biol 16:920–926

    Article  PubMed  CAS  Google Scholar 

  • Kortschak RD, Samuel G, Saint R, Miller DJ (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol 13:2190–2195

    Article  PubMed  CAS  Google Scholar 

  • Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160

    Article  PubMed  CAS  Google Scholar 

  • Larroux C, Fahey B, Liubicich D, Hinman VF, Gauthier M, Gongora M, Green K, Worheide G, Leys SP, Degnan BM (2006) Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol Dev 8:150–173

    Article  PubMed  CAS  Google Scholar 

  • Lee HH, Frasch M (2004) Survey of forkhead domain encoding genes in the Drosophila genome: classification and embryonic expression patterns. Dev Dyn 229:357–366

    Article  PubMed  CAS  Google Scholar 

  • Magie CR, Pang K, Martindale MQ (2005) Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol 215:1–13

    Article  Google Scholar 

  • Martindale MQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6:917–927

    PubMed  CAS  Google Scholar 

  • Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131:2463–2474

    Article  PubMed  CAS  Google Scholar 

  • Martinez DE, Dirksen ML, Bode PM, Jamrich M, Steele RE, Bode HR (1997) Budhead, a fork head/HNF-3 homologue, is expressed during axis formation and head specification in hydra. Dev Biol 192:523–536

    Article  PubMed  CAS  Google Scholar 

  • Mazet F, Shimeld SM (2002) The evolution of chordate neural segmentation. Dev Biol 251:258–270

    Article  PubMed  CAS  Google Scholar 

  • Mazet F, Yu JK, Liberles DA, Holland LZ, Shimeld SM (2003) Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene 316:79–89

    Article  PubMed  CAS  Google Scholar 

  • Miller DJ, Ball EE, Technau U (2005) Cnidarians and ancestral genetic complexity in the animal kingdom. Trends Genet 21:536–539

    Article  PubMed  CAS  Google Scholar 

  • Minokawa T, Rast JP, Arenas-Mena C, Franco CB, Davidson EH (2004) Expression patterns of four different regulatory genes that function during sea urchin development. Gene Expression Patterns 4:449–456

    Article  PubMed  CAS  Google Scholar 

  • Odenthal J, Nusslein-Volhard C (1998) Fork head domain genes in zebrafish. Dev Genes Evol 208:245–258

    Article  PubMed  CAS  Google Scholar 

  • Pohl BS, Knochel S, Dillinger K, Knochel W (2002) Sequence and expression of FoxB2 (XFD-5) and FoxI1c (XFD-10) in Xenopus embryogenesis. Mech Dev 117:283–287

    Article  PubMed  CAS  Google Scholar 

  • Roosen-Runge EC, Szollosi D (1965) On biology and structure of the testis of Philidium Leuckhart (Leptomedusae). Z Zellforsch Mikrosk Anat 68:597–610

    Article  PubMed  CAS  Google Scholar 

  • Schmid B, Schmid V, Tardent P (1974) The umbrellar growth process in the leptomedusa Phialidium hemisphaericum (Syn. Campanularia johnstoni). Experimentia 30:1399–1400

    Article  CAS  Google Scholar 

  • Seipel K, Schmid V (2005) Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev Biol 282:14–26

    Article  PubMed  CAS  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223

    Article  PubMed  CAS  Google Scholar 

  • Singla CL (1975) Statocysts of hydromedusae. Cell Tissue Res 158:391–407

    Article  PubMed  CAS  Google Scholar 

  • Spring J, Yanze N, Josch C, Middel AM, Winninger B, Schmid V (2002) Conservation of Brachyury, Mef2, and Snail in the myogenic lineage of jellyfish: a connection to the mesoderm of bilateria. Dev Biol 244:372–384

    Article  PubMed  CAS  Google Scholar 

  • Tan PB, Lackner MR, Kim SK (1998) MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction. Cell 93:569–580

    Article  PubMed  CAS  Google Scholar 

  • Technau U, Bode HR (1999) HyBra1, a Brachyury homologue, acts during head formation in Hydra. Development 126:999–1010

    PubMed  CAS  Google Scholar 

  • Thomas MB, Freeman G, Martin VJ (1987) The embryonic origin of neurosensory cells and the role of nerve cells in metamorphosis in Phialidium gregarium (Cnidaria, Hydrozoa). Int J Invertebr Reprod Dev 11:265–287

    Google Scholar 

  • Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu R, Martindale MQ (2003) An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426:446–450

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Martindale MQ (2002) Expression of the ctenophore Brain Factor 1 forkhead gene ortholog (ctenoBF-1) mRNA is restricted to the presumptive mouth and feeding apparatus: implications for axial organization in the Metazoa. Dev Genes Evol 212:338–348

    Article  PubMed  CAS  Google Scholar 

  • Yu JK, Holland ND, Holland LZ (2003) AmphiFoxQ2, a novel winged helix/forkhead gene, exclusively marks the anterior end of the amphioxus embryo. Dev Genes Evol 213:102–105

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dany and Claude Carré for encouraging us to develop Clytia as a laboratory model and for giving us advice on its culture. We also thank all the members of our two research groups, in particular, Tsuyoshi Momose, Michaël Manuel, Elsa Denker and Muriel Jager, for useful discussions and for participation in developing tools and techniques. We also thank Mark Martindale for providing a detailed Nematostella in situ hybridisation protocol, and one of the reviewers for alerting us to the Drosophila FoxQ2 expression data.

This research was funded by the CNRS, by joint contracts to our two groups from the GIS “Marine genomics”/ANR, and by ACI, ANR and ARC contracts to EH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Houliston.

Additional information

Communicated by M. Q. Martindale

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1

Bayesian analysis of Fox gene phylogeny. Topology of the 50% majority-rule consensus tree resulting from 1,001 trees generated. The posterior probability for each node is indicated above the node (DOC 523 kb)

S2

Accession numbers of sequences used in the phylogenetic analysis (DOC 45 kb)

S3

Sequence alignment used in the phylogenetic analyses (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevalier, S., Martin, A., Leclère, L. et al. Polarised expression of FoxB and FoxQ2 genes during development of the hydrozoan Clytia hemisphaerica . Dev Genes Evol 216, 709–720 (2006). https://doi.org/10.1007/s00427-006-0103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-006-0103-6

Keywords

Navigation