Development Genes and Evolution

, Volume 216, Issue 12, pp 821–828 | Cite as

The expression of a hunchback ortholog in the polychaete annelid Platynereis dumerilii suggests an ancestral role in mesoderm development and neurogenesis

  • Pierre Kerner
  • Fabiola Zelada González
  • Martine Le Gouar
  • Valérie Ledent
  • Detlev Arendt
  • Michel Vervoort
Short Communication

Abstract

Orthologs of the Drosophila gap gene hunchback have been isolated so far only in protostomes. Phylogenetic analysis of recently available genomic data allowed us to confirm that hunchback genes are widely found in protostomes (both lophotrochozoans and ecdysozoans). In contrast, no unequivocal hunchback gene can be found in the genomes of deuterostomes and non-bilaterians. We cloned hunchback in the marine polychaete annelid Platynereis dumerilii and analysed its expression during development. In this species, hunchback displays an expression pattern indicative of a role in mesoderm formation and neurogenesis, and similar to the expression found for hunchback genes in arthropods. These data suggest altogether that these functions are ancestral to protostomes.

Keywords

Evolution Annelid Platynereis dumerilii hunchback Neurogenesis Mesoderm formation 

Notes

Acknowledgments

This work has been supported by the CNRS and the Ministère Français de la Recherche through its ACI ‘Jeunes chercheurs et jeunes chercheuses’ and ACI ‘Biologie et Physiologie du développement’ (to M.V.). F.Z.G. was financially supported during her Ph.D. thesis by the DFG (Deutsche Forschungsgemeinschaft). P.K. holds a ‘Bourse pour Docteur-Ingénieur’ from the CNRS. V.L. was supported by the Belgian Science Policy.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Chipman AD, Stollewerk A (2006) Specification of neural precursor identity in the geophilomorph centipede Strigamia maritima. Dev Biol 290:337–350PubMedCrossRefGoogle Scholar
  3. Fay DS, Stanley HM, Han M, Wood WB (1999) A Caenorhabditis elegans homologue of hunchback is required for late stages of development but not early embryonic patterning. Dev Biol 205:240–253PubMedCrossRefGoogle Scholar
  4. Gamberi C, Peterson DS, He L, Gottlieb E (2002) An anterior function for the Drosophila posterior determinant Pumilio. Development 129:2699–2710PubMedGoogle Scholar
  5. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  6. Iwasa JH, Suver DW, Savage RM (2000) The leech hunchback protein is expressed in the epithelium and CNS but not in the segmental precursor lineages. Dev Gen Evol 210:277–288CrossRefGoogle Scholar
  7. Kontarakis Z, Copf T, Averof M (2005) Expression of hunchback during trunk segmentation in the branchiopod crustacean Artemia franciscana. Dev Gen Evol 22:1–5Google Scholar
  8. Liu PZ, Kaufman TC (2004) hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development 131:1515–1527PubMedCrossRefGoogle Scholar
  9. Mito T, Sarashina I, Zhang H, Iwahashi A, Okamoto H, Miyawaki K, Shinmyo Y, Ohuchi H, Noji S (2005) Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development 132:2069–2079PubMedCrossRefGoogle Scholar
  10. Patel NH, Hayward DC, Lall S, Pirkl NR, DiPietro D, Ball EE (2001) Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. Development 128:3459–3472PubMedGoogle Scholar
  11. Pearson B, Doe C (2004) Specification of temporal identity in the developing nervous system. Annu Rev Cell Dev Biol 20:619–647PubMedCrossRefGoogle Scholar
  12. Pultz MA, Westendorf L, Gale SD, Hawkins K, Lynch J, Pitt JN, Reeves NL, Yao JC, Small S, Desplan C, Leaf DS (2005) A major role for zygotic hunchback in patterning the Nasonia embryo. Development 132:3705–3715PubMedCrossRefGoogle Scholar
  13. Rivera-Pomar R, Jäckle H (1996) From gradients to stripes in Drosophila embryogenesis: filling in the gaps. Trends Genet 12:478–483PubMedCrossRefGoogle Scholar
  14. Savage RM, Shankland M (1996) Identification and characterization of a hunchback ortholog, Lzf2, and its expression during leech embryogenesis. Dev Biol 175:205–217PubMedCrossRefGoogle Scholar
  15. Shimizu T, Savage RM (2002) Expression of hunchback protein in a subset of ectodermal teloblasts of the oligochaete annelid Tubifex. Dev Gen Evol 212:520–525CrossRefGoogle Scholar
  16. Sommer RJ, Retzlaff M, Goerlich K, Sander K, Tautz D (1992) Evolutionary conservation pattern of zinc-finger domains of Drosophila segmentation genes. Proc Natl Acad Sci U S A 89:10782–10786PubMedCrossRefGoogle Scholar
  17. Tessmar-Raible K, Arendt D (2003) Emerging systems: between vertebrates and arthropods, the lophotrochozoa. Curr Opin Genet Dev 13:331–340PubMedCrossRefGoogle Scholar
  18. Thompson JD, Higgins JD, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  19. Werbrock AH, Meiklejohn DA, Sainz A, Iwasa JH, Savage RM (2001) A polychaete hunchback ortholog. Dev Biol 235:476–488PubMedCrossRefGoogle Scholar
  20. Wolff C, Sommer R, Schroder R, Glaser G, Tautz D (1995) Conserved and divergent expression aspects of the Drosophila segmentation gene hunchback in the short germ band embryo of the flour beetle Tribolium. Development 121:4227–4236PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Pierre Kerner
    • 1
  • Fabiola Zelada González
    • 2
    • 5
  • Martine Le Gouar
    • 1
  • Valérie Ledent
    • 3
  • Detlev Arendt
    • 2
  • Michel Vervoort
    • 1
    • 4
  1. 1.Laboratoire Evolution et Développement des protostomiensCentre de Génétique Moléculaire-CNRS UPR 2167, 1, av. de la terrasseGif-sur-Yvette cedexFrance
  2. 2.European Molecular Biology Laboratory (EMBL)HeidelbergGermany
  3. 3.Belgian EMBnet Node-Laboratoire de Bioinformatique, Institut de Biologie et de Médecine MoléculairesUniversité Libre de BruxellesGosseliesBelgium
  4. 4.UFR de Biologie et Sciences de la NatureUniversité Paris 7-Denis DiderotParis Cedex 05France
  5. 5.Centre d´Immunologie Marseille-Luminy (CIML)Parc Scientifique de Luminy. Case 906Marseille Cedex 09France

Personalised recommendations