Development Genes and Evolution

, Volume 216, Issue 11, pp 667–681 | Cite as

Early embryogenesis of planaria: a cryptic larva feeding on maternal resources

  • Albert Cardona
  • Volker Hartenstein
  • Rafael Romero
Original Article


The early planarian embryo presents a complete ciliated epidermis and a pharynx and feeds on maternal yolk cells. In this paper, we report on all the elements involved in the formation of such an autonomous embryo, which we name cryptic larva. First, we provide a description of the spherical and fusiform yolk cells and their relationship with the blastomeres, from the laying of the egg capsule up to their final fate in mid embryonic stages. Then, we describe the early cleavage and the subsequent development of the tissues of the cryptic larva, namely, the primary epidermis, the embryonic pharynx, and a new cell type, the star cells. Finally, we discuss the possibility that the cryptic larva either constitutes a vestigial larva or, more likely, is the evolutionary result of the competition between multiple embryos for the limited and shared maternal resources in the egg capsule.


Flatworm Planaria Embryogenesis Larva Competition 



The authors wish to express their gratitude to Núria Cortadellas and Almudena Fernández from the Serveis Científico-Técnics UB for their exquisite professional expertise in electron microscopy, to Juani Fernandez-Rodriguez for sharing her expertise in generating and hybridizing myoD probes, and also to Cati Lee for laboratory assistance in sequencing and synthesizing the probes. The authors are deeply thankful for extensive and encouraging comments from the anonymous reviewers. AC was supported by an FPU fellowship from the MEC, Spain. This work was supported by grants NIH NS29367 and NSF to IBN-0110718 to VH and BFU2004-05015 from the PNIC-DIT 2004-07 by the MEC, Spain to RR. Many thanks to Lukas Schärer and the Institute of Zoology in Innsbruck for extremely helpful discussions.


  1. Auladell C, Valero JG, Baguna J (1993) Ultrastructural localization of RNA in the chromatoid bodies of undifferentiated cells (neoblasts) in planarians by the Rnase-Gold complex technique. J Morphol 216:319–326CrossRefGoogle Scholar
  2. Baguna J, Riutort M (2004). Molecular phylogeny of the platyhelminthes. Can J Zool 82(2):168–193CrossRefGoogle Scholar
  3. Benazzi M, Gremigni V (1982) Developmental biology of triclad turbellarians (Planaria). In: Liss AR (ed) Developmental biology of freshwater invertebrates. New York, pp 151–211Google Scholar
  4. Bueno D, Baguna J, Romero R (1997) Cell-, tissue-, and position-specific monoclonal antibodies against the planarian Dugesia (Girardia) tigrina. Histochem Cell Biol 107(2):139–149PubMedCrossRefGoogle Scholar
  5. Bueno D, Fernandez-Rodriguez J, Cardona A, Hernandez-Hernandez V, Romero R (2002) A novel invertebrate trophic factor related to invertebrate neurotrophins is involved in planarian body regional survival and asexual reproduction. Dev Biol 252(2):188–201PubMedCrossRefGoogle Scholar
  6. Cardona A (2005) The embryonic development of the planarian Schmidtea polychroa using molecular markers. Ph.D. thesis, University of BarcelonaGoogle Scholar
  7. Cardona A, Hartenstein V, Romero R (2005a) The embryonic development of the triclad Schmidtea polychroa. Dev Genes Evol 215(3):109–131PubMedCrossRefGoogle Scholar
  8. Cardona A, Fernandez-Rodriguez J, Solana J, Romero R (2005b) An in situ hybridization protocol for planarian embryos: monitoring myosin heavy chain gene expression. Dev Genes Evol 215(9):482–488PubMedCrossRefGoogle Scholar
  9. Cebrià F (2000) DeterminaciÚ, diferen ciaci i restituciÚ del patrÚ muscular durant la regeneraciÚ i renovaciÚ cel.lular a plan‡ries d’aigua dolÁa. Ph.D. thesis, University of BarcelonaGoogle Scholar
  10. Diefenbach T, Koss R, Goldberg J (1998) Early development of an identified serotoninergic neuron in Helisoma trivolvis embryos: serotonin expression, de-expression, and uptake. J Neurobiol 34(4):361–376PubMedCrossRefGoogle Scholar
  11. Domenici L, Gremigni V (1974) Electron microscopical and cytochemical study of vitelline cells in the fresh-water triclad Dugesia lugubris s.l. II. Origin and distribution of reserve materials. Cell Tissue Res 152(2):219–228PubMedCrossRefGoogle Scholar
  12. Fulinski B (1916) Die KeimblÇtterbildung bei Dendrocoelum lacteum Oerst. Zool Anz 47:380–400Google Scholar
  13. Giesa S (1966) Die embryonalentwicklung von Monocelis fusca Oersted. Z Morphol Okol Tiere 57:137–230CrossRefGoogle Scholar
  14. Gremigni V, Domenici L (1974) Electron microscopical and cytochemical study of vitelline cells in the fresh water triclad Dugesia lugrubris s.l. I. Origin and morphogenesis of cocoon-shell globules. Cell Tissue Res 150(2):261–270PubMedCrossRefGoogle Scholar
  15. Hartenstein V, Ehlers U (2000) The embryonic development of the rhabdocoel flatworm Mesostoma lingua. Dev Genes Evol 210:399–415PubMedCrossRefGoogle Scholar
  16. Jordan A (1993) Tsetseflies (Glossinidae). In: Lane R, Crosskey R (eds) Medical insects and arachnids, chapter 9. Chapman & Hall, LondonGoogle Scholar
  17. Kato K (1940) On the development of some Japanese polyclads. Jpn J Zool 8:537–573Google Scholar
  18. Koscielski B (1966) Cytological and cytochemical investigations on the embryonic development of Dendrocoelum lacteum O.F. M∏ller. Zool Pol 16(1):83–102Google Scholar
  19. Koss R, Diefenbach T, Kuang S, Doran S, Goldberg J (2003) Coordinated development of identified serotoninergic neurons and their target ciliary cells in Helisoma trivolvis embryos. J Comp Neurol 457(4):313–325PubMedCrossRefGoogle Scholar
  20. le Moigne A (1963) Etude du dèveloppement embryonnaire de Polycelis nigra (Turbellariè, Triclade). Bull Soc Zool Fr 88:403–422Google Scholar
  21. le Moigne A (1966) Etude du dèveloppement embryonaire et recherches sur les cellules de la règènèration chez l’embryon de la Planaire Polycelis nigra (Turbellariè, Triclade). J Embryol Exp Morphol 15:39–60PubMedGoogle Scholar
  22. le Moigne A (1969) Étude dy développement et de la régénération embryonnaires de Polycelis nigra (Ehr.) et Polycelis tenius (lijima) turbellaries triclades. Anal d’Embr Morph 2(1):51–69Google Scholar
  23. Marinelli M, Vagnetti D (1973) Electron microscopic investigations on the yolk cells in the cocoon of Dugesia lugubris s.l. Boll Zool 40:367–369Google Scholar
  24. Orii H, Sakurai T, Watanabe K (2005) Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica. Dev Genes Evol 205(3):143–157CrossRefGoogle Scholar
  25. Pongratz N, Gerace L, Michiels N (2002) Genetic differentiation within and between populations of a hermaphroditic freshwater planarian. Heredity 89(1):64–69PubMedCrossRefGoogle Scholar
  26. Rasband W (1997–2006) ImageJ.
  27. Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sanchez Alvarado A (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8(5):635–649PubMedCrossRefGoogle Scholar
  28. Rieger R, Tyler S, III JS, Rieger G (1991) Platyhelminthes: Turbellaria. In: Harrison F, Bogitsh B (eds) Platyhelminthes and Nemertinea. Microscopic anatomy of invertebrates, vol 3, chapter 2. Wiley-Liss, New York, pp 7–140Google Scholar
  29. Sanchez-Alvarado A (2003) The freshwater planarian Schmidtea mediterranea: embryogenesis, stem cells and regeneration. Curr Opin Genet Dev 13(4):438–444PubMedCrossRefGoogle Scholar
  30. Sanchez Alvarado A, Newmark PA (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci USA 96:5049–5054PubMedCrossRefGoogle Scholar
  31. Sakurai T, Ishii S (1995) An ultrastructural study of primary epidermis formation in Bdellocephala brunnea (Turbellaria; Tricladida). Invertebr Reprod Dev 28:77–85Google Scholar
  32. Seilern-Aspang F (1958) Entwicklungsgeschichtliche studien en paludicolen tricladen. Roux’ Archiv f∏r Entwicklungsmechanik 150:425–480CrossRefGoogle Scholar
  33. Skaer R (1965) The origin and continuous replacement of epidermal cells in the planarian Polycelis tenuis (Ijima). J Embryol Exp Morphol 13:129–139PubMedGoogle Scholar
  34. Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, Agata K (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206(1):73–87PubMedCrossRefGoogle Scholar
  35. Stevens M (1904) On the germ cells and the embryology of Planaria simplissima. Proc Natl Acad Sci Phila 56:208–220Google Scholar
  36. Technau U, Miller M, Bridge D, Steele R (2003) Arrested apoptosis of nurse cells during Hydra oogenesis and embryogenesis. Dev Biol 260:191–206PubMedCrossRefGoogle Scholar
  37. Thomas M (1986) Embryology of the Turbellaria and its phylogenetic significance. Hydrobiologia 132:105–115CrossRefGoogle Scholar
  38. Tyler S, Tyler M (1997) Origin of the epidermis in parasitic platyhelminths. Int J Parasitol 27(6):715–738PubMedCrossRefGoogle Scholar
  39. Umesono Y, Watanabe K, Agata K (1997) A planarian orthopedia homolog is speci?cally expressed in the branch region of both mature and regenerating brain. Dev Growth Differ 39(6):723–727PubMedCrossRefGoogle Scholar
  40. Younossi-Hartenstein A, Hartenstein V (2001) The embryonic development of the temnocephalid flatworms Craspedella pedum and Diceratocephala sp. Cell Tissue Res 304:295–310PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Albert Cardona
    • 1
    • 2
  • Volker Hartenstein
    • 1
  • Rafael Romero
    • 2
  1. 1.Molecular Cell and Developmental BiologyUniversity of California Los AngelesLos AngelesUSA
  2. 2.Facultat de Biologia, Departament de GenèticaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations