Development Genes and Evolution

, Volume 216, Issue 7–8, pp 357–362

Introduction—development and phylogeny of the arthropods: Darwin’s legacy



In the present essay, I first recall the genealogical concept of classification settled by Charles Darwin in the Origin of Species. Darwin tightly linked what we now call phylogeny and development. He often insisted to take into account embryonic and larval characters, most often using as examples his favourite animals, the cirripedes. Then I discuss remaining problems, and also perspectives, to address the link between phylogeny and development in the modern terms of molecular and cladistic phylogenetics and of molecular and genetic developmental biology.


Evolution Homology History Cirripedes 


  1. Abouheif E (1997) Developmental biology and homology: a hierarchical approach. Trends Ecol Evol 12:405–408CrossRefGoogle Scholar
  2. Abouheif E, Akam M, Dickinson WJ, Holland PW, Meyer A, Patel NH, Raff RA, Roth VL, Wray GA (1997) Homology and developmental genes. Trends Genet 13:432–433PubMedCrossRefGoogle Scholar
  3. Anderson DT (1994) Barnacles. Structure, function, development and evolution. Chapman & Hall, London, p 357Google Scholar
  4. Averof M, Akam M (1995) Insect–crustacean relationships: insights from comparative developmental and molecular studies. Philos Trans R Soc Lond B 347:293–303Google Scholar
  5. Bolker JA, Raff RA (1996) Developmental genetics and traditional homology. BioEssays 18:489–494PubMedCrossRefGoogle Scholar
  6. Bonnet C (1782) Contemplation de la Nature. J. G. Virchaux & Cie, Hambourg, p 364Google Scholar
  7. Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to diversity. Molecular genetics and the evolution of animal design. Blackwell, Malden, MA, USA, p 214Google Scholar
  8. Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763PubMedCrossRefGoogle Scholar
  9. Cracraft J (2005) Phylogeny and evo–devo: characters, phylogeny and historical analysis of the evolution of development. Zoology 108:345–356PubMedCrossRefGoogle Scholar
  10. Damen WG (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250PubMedGoogle Scholar
  11. Damen WG, Hausdorf M, Seyfarth EA, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci U S A 95:10665–10670PubMedCrossRefGoogle Scholar
  12. Darwin C (1851) A monograph on the subclass Cirripedia, with figures of all the species. The Lepadidae or pedunculated cirripedes. Ray Society, London, p 400Google Scholar
  13. Darwin C (1854) A monograph on the subclass Cirripedia, with figures of all the species. The Balanidae, the Verrucidae, etc. Ray Society, London, p 684Google Scholar
  14. Darwin C (1859) The origin of species. Penguin Books (1968), London, p 477Google Scholar
  15. Darwin C (1892) The autobiography of Charles Darwin and selected letters. In: Francis Darwin (ed). Dover Pub Inc., New York, p 3653Google Scholar
  16. Darwin C (1909) The foundations of the origin of species. Cambridge University Press, Cambridge, UKGoogle Scholar
  17. Dayrat B (2003) The roots of phylogeny: how did Haeckel build his trees? Syst Biol 52:515–527PubMedGoogle Scholar
  18. de Beer GR (1938) Embryology and evolution. In: de Beer GR (ed) Evolution. Essays on aspects of evolutionary biology. Clarendon, Oxford, pp 57–78Google Scholar
  19. de Rosa R, Grenier J, Andreeva T, Cook C, Adoutte A, Akam M, Carroll S, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776PubMedCrossRefGoogle Scholar
  20. Deutsch J (1997) Les gènes homéotiques (gènes Hox) comme traceurs de l’évolution chez les métazoaires : une approche récente, qui s’inscrit dans la démarche Darwinienne. In: Tort P (ed) Pour Darwin. Presses Universitaires de France, Paris, pp 1011–1023Google Scholar
  21. Deutsch JS, Mouchel-Vielh E, Quéinnec E, Gibert JM (2004) Genes, segments and tagmata in cirripedes. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. A. A. Balkema, Lisse, The Netherlands, pp 19–42Google Scholar
  22. Dickinson WJ (1995) Molecules and morphology: where’s the homology? Trends Genet 11:119–121PubMedCrossRefGoogle Scholar
  23. Dohle W (1997) Myriapod–insect relationships as opposed to an insect–crustacean sister group relationship. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 305–315Google Scholar
  24. Dohle W (2001) Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name “Tetraconata” for the monophyletic unit Crustacea + Hexapoda. Ann Soc Entomol Fr 37:85–103Google Scholar
  25. Fryer G (1997) A defence of arthropod polyphyly. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 23–33Google Scholar
  26. Gehring WJ, Ikeo K (1999) Pax6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377PubMedCrossRefGoogle Scholar
  27. Geoffroy Saint-Hilaire E (1830) Principes de philosophie zoologique. In: Le Guyader H (1998) Geoffroy Saint-Hilaire. Un naturaliste visionnaire. Belin, Paris, pp 129–237Google Scholar
  28. Gould SJ (2000) The lying stones of Marrakech. Harmony Books, New York, p 508Google Scholar
  29. Haeckel E (1866) Generelle Morphologie der Organismen. Allgemeine Grundzüge der organishen Formen-Wissenschaft, mechanish begründet durch die von Charles Darwin reformiete Descendenztheorie. Reimer, Berlin, p 680Google Scholar
  30. Haeckel E (1874) Histoire de la création des êtres organisés d’après les lois naturelles. Reinwald, Paris, p 680Google Scholar
  31. Hennig W (1950) Grundzüge einer Theorie der phylogenetishen Systematik, Berlin. Deutscher Zentralverlag, BerlinGoogle Scholar
  32. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana, p 263Google Scholar
  33. Jacob F (1977) Evolution and tinkering. Science 196:1161–1166PubMedGoogle Scholar
  34. Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci U S A 95:8420–8427PubMedCrossRefGoogle Scholar
  35. Lamarck J-B (1809) Philosophie zoologique. GF-Flammarion (1994), Paris, p 718Google Scholar
  36. Lamarck J-B (1820) Système analytique des connaissances positives de l’homme. Presses Universitaires de France (1988), Paris, p 364Google Scholar
  37. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570PubMedCrossRefGoogle Scholar
  38. Love AC (2002) Darwin and Cirripedia prior to 1846: exploring the origins of the barnacle research. J Hist Biol 35:251–289CrossRefGoogle Scholar
  39. Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191PubMedCrossRefGoogle Scholar
  40. Manton SM, Anderson DT (1979) Polyphyly and the evolution of arthropods. In: House MR (ed) The origin of major invertebrate groups. Systematics Association, London, pp 269–321Google Scholar
  41. McGinnis W, Levine MS, Hafen S, Kuroiwa A, Gehring WJ (1984) A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308:428–433PubMedCrossRefGoogle Scholar
  42. Mittmann B, Scholtz G (2003) Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 213:9–17PubMedGoogle Scholar
  43. Nam J, Nei M (2005) Evolutionary change of the numbers of homeobox genes in bilateral animals. Mol Biol Evol 22:2386–2394PubMedCrossRefGoogle Scholar
  44. Nardi F, Spinsanti G, Boore JL, Carapelli A, Dallai R, Frati F (2003) Hexapod origins: monophyletic or paraphyletic? Science 299:1887–1889PubMedCrossRefGoogle Scholar
  45. Nei M (2005) Selectionism and neutralism in molecular evolution. Mol Biol Evol 22:2318–2342PubMedCrossRefGoogle Scholar
  46. Newman WA (1987) Evolution of Cirripedes and their major groups. In: Southward AJ (ed) Barnacle biology. A. A. Balkema, Rotterdam, pp 3–42Google Scholar
  47. Nielsen C (1995) Animal evolution. Interrelationships of the living phyla. Oxford University Press, Oxford, p 467Google Scholar
  48. Nielsen C, Martinez P (2003) Patterns of gene expression: homology or homocracy? Dev Genes Evol 213:149–154PubMedGoogle Scholar
  49. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–8014PubMedCrossRefGoogle Scholar
  50. Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York, p 160Google Scholar
  51. Philippe H, Chenuil A, Adoutte A (1994) Can the Cambrian explosion be inferred through molecular phylogeny? Development 120:S15–S25Google Scholar
  52. Pichaud F, Treisman J, Desplan C (2001) Reinventing a common strategy for patterning the eye. Cell 105:9–12Google Scholar
  53. Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biotechnol 2:1Google Scholar
  54. Richter S (2002) The Tetraconata concept: hexapod–crustacean relationships and the phylogeny of Crustacea. Org Divers Evol 2:217–237CrossRefGoogle Scholar
  55. Scholtz G (2005) Homology and ontogeny: pattern and process in comparative developmental biology. Theory Biosci 124:121–143CrossRefGoogle Scholar
  56. Scott MP, Weiner AJ (1984) Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax and fushi tarazu loci in Drosophila. Proc Natl Acad Sci U S A 81:4115–4119PubMedCrossRefGoogle Scholar
  57. Tassy P (1998) L’arbre à remonter le temps. Diderot Éditeur, Paris, p 388Google Scholar
  58. Telford MJ (2000) Turning Hox “signatures” into synapomorphies. Evol Dev 2:360–364PubMedCrossRefGoogle Scholar
  59. Telford MJ, Thomas RH (1995) Systematics: demise of the Atelocerata? Nature 376:123–124CrossRefGoogle Scholar
  60. Telford MJ, Thomas RH (1998) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci U S A 95:10671–10675PubMedCrossRefGoogle Scholar
  61. Thomson JV (1830) On the cirripedes or barnacles. Zoological Research I:69–85Google Scholar
  62. Willmer PG (1990) Invertebrate relationships. Patterns in animal evolution. Cambridge University Press, Cambridge, UK, p 387Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Développement et Évolution, UMR 7622CNRS et Université P. et M. CurieParisFrance

Personalised recommendations