Development Genes and Evolution

, Volume 216, Issue 7–8, pp 373–383 | Cite as

From embryo to adult—beyond the conventional periodization of arthropod development

  • Alessandro Minelli
  • Carlo Brena
  • Gianluca Deflorian
  • Diego Maruzzo
  • Giuseppe Fusco


The traditional framework for the description of arthropod development takes the molt-to-molt interval as the fundamental unit of periodization, which is similar to the morphological picture of the main body axis as a series of segments. Developmental time is described as the subdivision into a few major stages of one or more instars each, which is similar to the subdivision of the main body axis into regions of one to many segments each. Parallel to recent criticisms to the segment as the fundamental building block of arthropod anatomy, we argue that, while a firm subdivision of development in stages is useful for describing arthropod ontogeny, this is limiting as a starting point for studying its evolution. Evolutionary change affects the association between different developmental processes, some of which are continuous in time whereas others are linked to the molting cycle. Events occurring but once in life (hatching; first achieving sexual maturity) are traditionally used to establish boundaries between major units of arthropod developmental time, but these boundaries are quite labile. The presence of embryonic molts, the ‘gray zone’ of development accompanying hatching (with the frequent delivery of an immature whose qualification as ‘free-embryo’ or ordinary postembryonic stage is arbitrary), and the frequent decoupling of growth and molting suggest a different view. Beyond the simple comparison of developmental schedules in terms of heterochrony, the flexible canvas we suggest for the analysis of arthropod development opens new vistas into its evolution. Examples are provided as to the origin of holometaboly and hypermetaboly within the insects.


Arthropoda Molting Heterochrony Holometaboly Hypermetaboly 


  1. Andersson G (1979) On the use of larval characters in the classification of lithobiomorph centipedes (Chilopoda Lithobiomorpha). In: Camatini M (ed) Myriapod biology. Academic, London, pp 73–81Google Scholar
  2. André HM (1988) Age-dependent evolution: from theory to practice. In: Humphries CJ (ed) Ontogeny and systematics. Columbia University Press, New York, pp 137–187Google Scholar
  3. André HM (1989) The concept of stase. In: André HM, Lions J-C (eds) L’ontogenèse et le concept de stase chez les arthropodes. AGAR Publishers, Warre, pp 3–16Google Scholar
  4. Bain BA (2003) Larval types and a summary of postembryonic development within the pycnogonids. Invertebr Reprod Dev 43:193–222Google Scholar
  5. Beck SD (1971) Growth and retrogression in larvae of Trogoderma glabrum (Coleoptera: Dermestidae). 1. Characteristics under feeding and starvation conditions. Ann Entomol Soc Am 64:149–155Google Scholar
  6. Berlese A (1913) Intorno alle metamorfosi degli insetti. Redia 9:121–136Google Scholar
  7. Budd GE (2001) Why are arthropods segmented? Evol Dev 3:332–342PubMedCrossRefGoogle Scholar
  8. Caussanel C (1966) Étude du développement larvaire de Labidura riparia (Derm. Labiduridae). Ann Soc Entomol Fr NS 2:469–498Google Scholar
  9. Chatterton BDE, Speyer SE (1997) Ontogeny. In: Kaesler RL (ed) Treatise on invertebrate paleontology, part O, Arthropoda 1, Trilobita, revised. Volume 1: introduction, Order Agnostida, Order Redlichiida. Geol Soc Amer, Boulder, CO; University of Kansas, Lawrence, KS, pp 173–247Google Scholar
  10. Edgecombe GD, Giribet G (2004) Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidase subunit I) to the phylogeny of centipedes (Myriapoda: Chilopoda): an analysis of morphology and four molecular loci. J Zoolog Syst Evol Res 42:89–134CrossRefGoogle Scholar
  11. Enghoff H, Dohle W, Blower JG (1993) Anamorphosis in millipedes (Diplopoda). The present state of knowledge and phylogenetic considerations. Zool J Linn Soc 109:103–234CrossRefGoogle Scholar
  12. Ferrari FD, Grygier MJ (2003) Comparative morphology among trunk limbs of Caenestheriella gifuensis and of Leptestheria kawachiensis (Crustacea: Branchiopoda: Spinicaudata). Zool J Linn Soc 139:547–564CrossRefGoogle Scholar
  13. Fusco G (2005) Trunk segment numbers and sequential segmentation in myriapods. Evol Dev 7:608–617PubMedCrossRefGoogle Scholar
  14. Gore RH (1985) Molting and growth in decapod larvae. In: Wenner AM (ed) Larval growth (Crustacean Issues 2). Balkema, Rotterdam Boston, pp 1–65Google Scholar
  15. Goudeau M (1977) Contribution à la biologie d’un crustacé parasite: Hemioniscus balani Buchholz, isopode épicaride. Nutrition, mues et croissance de la femelle et des embryons. Cah Biol Mar 18:201–242Google Scholar
  16. Grandjean F (1938) Sur l’ontogénie des acariens. CR Acad Sci Paris 206D:146–150Google Scholar
  17. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  18. Hassall M, Grayson FWL (1987) The occurrence of an additional instar in the development of Chorthippus brunneus (Orthoptera: Gomphocerinae). J Nat Hist 21:329–337Google Scholar
  19. Heming BS (2003) Insect development and evolution. Comstock Publ Associates, Ithaca LondonGoogle Scholar
  20. Hobbs HH Jr (1981) The crayfishes of Georgia. Smithson Contrib Zool 318:1–549Google Scholar
  21. Hughes NC (2003) Trilobite body patterning and the evolution of arthropod tagmosis. Bioessays 25:386–395PubMedCrossRefGoogle Scholar
  22. Ivanenko VN, Ferrari FD, Smurov AV (2001) Nauplii and copepodids of Scottomyzon gibberum (Copepoda: Siphonostomatoida: Scottomyzontidae, new family), a symbiont of Asterias rubens (Asteroidea). Proc Biol Soc Wash 114:237–261Google Scholar
  23. Kabata Z (1979) Parasitic copepoda of British fishes. Ray Society, LondonGoogle Scholar
  24. Klausnitzer B (2003) Unterordnung Polyphaga. In: Dathe HH (ed) 5. Teil: Insecta. In: Gruner H-E (ed) Band I. Wirbellose Tiere. In: Kaestner A (founder) Lehrbuch der Speziellen Zoologie. Gustav Fischer, Jena Stuttgart New York, pp 452–526Google Scholar
  25. Konopová B, Zrzavý J (2005) Ultrastructure, development, and homology of insect embryonic cuticles. J Morphol 264:339–362PubMedCrossRefGoogle Scholar
  26. Krool S, Bauer T (1987) Reproduction, development and pheromone secretion in Heteromurus nitidus Templeton, 1835 (Collembola, Entomobryidae). Rec Ecol Biol Sol 24:187–195Google Scholar
  27. Langton PH, Cranston PS, Armitage P (1988) The parthenogenetic midge of water supply systems, Paratanytarsus grimmi (Schneider) (Diptera: Chironomidae). Bull Entomol Res 78:317–328CrossRefGoogle Scholar
  28. Lawrence JF, Nielsen ES, Mackerras IM (1991) Skeletal anatomy and key to orders. In: CSIRO (ed) Insects of Australia. I. Melbourne University Press, Carlton, pp 3–32Google Scholar
  29. Michalik P, Uhl G (2005) The male genital system of the cellar spider Pholcus phalangioides (Fuesslin, 1775) (Pholcidae, Araneae): development of spermatozoa and seminal secretion. Front Zool 2:12PubMedCrossRefGoogle Scholar
  30. Minelli A (1996) Segments, body regions and the control of development through time. Mem Calif Acad Sci 20:55–61Google Scholar
  31. Minelli A (2003) The development of animal form. Cambridge University Press, CambridgeGoogle Scholar
  32. Minelli A (2004) Bits and pieces. Science 306:1693–1694PubMedCrossRefGoogle Scholar
  33. Minelli A, Fusco G (2004) Evo-devo perspectives on segmentation: model organisms and beyond. Trends Ecol Evol 19:423–429PubMedCrossRefGoogle Scholar
  34. Minelli A, Negrisolo E, Fusco G (2006) Reconstructing animal phylogeny in the light of evolutionary developmental biology. In: Hodkinson TR, Parnell JAN, Waldren S (eds) Systematics of species reach taxa: building and using the tree of life. CRC Press, Boca Raton, FLGoogle Scholar
  35. Moritz M (1993) Unterstamm Arachnata. In: Gruner EE, Moritz M, Dunger W (eds) 4. Teil: Arthropoda (ohne Insecta). In: Gruner H-E (ed) Band I. Wirbellose Tiere. In: Kaestner A (founder) Lehrbuch der Speziellen Zoologie. Gustav Fischer, Jena Stuttgart New York, pp 64–442Google Scholar
  36. Murakami Y (1963) Postembryonic development of the common Myriapoda of Japan. XIII. Life history of Bazillozonium nodulosum Verhoeff (Colobognatha, Platydesmidae) 3. Zool Mag Tokyo 71:245–249Google Scholar
  37. Nigon V (1965) Développment et reproduction des Nématodes. In: Grassé PP (ed) Traité de Zoologie, Tome IV, fascicule II. Masson, Paris, pp 218–386Google Scholar
  38. Nielsen C (2001) Animal evolution: interrelationships of the living phyla, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  39. Nijhout F (1994) Insect hormones. Princeton University Press, Princeton, NJGoogle Scholar
  40. Sahli F (1990) On post-adult moults in Julida (Myriapoda, Diplopoda). Why do periodomorphosis and intercalaries occur in males? In: Minelli A (ed) Proceedings of the 7th International Congress of Myriapodology. Brill, Leiden New York København Köln, pp 135–156Google Scholar
  41. Scholtz G (2000) Evolution of the nauplius stage in malacostracan crustaceans. J Zool Syst Evol Res 38:175–187CrossRefGoogle Scholar
  42. Scholtz G (2004) Baupläne versus ground patterns, phyla versus monophyla: aspects of patterns and processes in evolutionary developmental biology. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea (Crustacean Issues 15). Balkema, Lisse, pp 3–16Google Scholar
  43. Sehnal F (1985) Growth and life cycles. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and pharmacology, 2. Postembryonic development. Pergamon, New York, pp 1–86Google Scholar
  44. Smith KK (2001) Heterochrony revisited: the evolution of developmental sequences. Biol J Linn Soc 73:169–186CrossRefGoogle Scholar
  45. Thorens P (1991) Développement et morphologie comparés de Chorthippus mollis (Charp.) (Orthoptera, Acrididae). Mitt Schweiz Entomol Ges 64:9–25Google Scholar
  46. Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401:447–452PubMedCrossRefGoogle Scholar
  47. Uvarov B (1966) Grasshoppers and locusts. A handbook of general acridology, vol 1. Anatomy, physiology, development, phase polymorphism, introduction to taxonomy. Cambridge University Press, Cambridge, UKGoogle Scholar
  48. Whiting MF (2004) Phylogeny of the holometabolous insects: the most successful group of terrestrial organisms. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, New York, pp 345–361Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Alessandro Minelli
    • 1
  • Carlo Brena
    • 1
  • Gianluca Deflorian
    • 1
  • Diego Maruzzo
    • 1
  • Giuseppe Fusco
    • 1
  1. 1.Department of BiologyUniversity of PadovaPadovaItaly

Personalised recommendations