Development Genes and Evolution

, Volume 215, Issue 7, pp 374–381 | Cite as

A high-throughput method for quantifying gene expression data from early Drosophila embryos

  • Hilde Janssens
  • Dave Kosman
  • Carlos E. Vanario-Alonso
  • Johannes Jaeger
  • Maria Samsonova
  • John Reinitz
Technical Note

Abstract

We describe an automated high-throughput method to measure protein levels in single nuclei in blastoderm embryos of Drosophila melanogaster by means of immunofluorescence. The method consists of a chain of specific algorithms assembled into an image processing pipeline. This pipeline transforms a confocal scan of an embryo stained with fluorescently tagged antibodies into a text file. This text file contains a numerical identifier for each nucleus, the coordinates of its centroid, and the average concentrations of three proteins in that nucleus. The central algorithmic component of the method is the automatic identification of nuclei by edge detection with the use of watersheds as an error-correction step. This method provides high-throughput quantification at cellular resolution.

Keywords

Image segmentation Mathematical morphology Insect segmentation Drosophila blastoderm 

Supplementary material

427_2005_484_ESM_supp.pdf (949 kb)
(949 KB)

References

  1. Azpiazu N, Frasch M (1993) tinman and bagpipe: two homeobox genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 7:1325–1340Google Scholar
  2. Bullock S, Stauber M, Prell A, Hughes JR, Ish-Horowicz D, Schmidt-Ott U (2004) Differential cytoplasmic mRNA localisation adjusts pair-rule transcription factor activity to cytoarchitecture in dipteran evolution. Development 131:4251–4261Google Scholar
  3. Chakraborty A (1996) Feature and module integration for image segmentation. Ph.D. thesis, Yale UniversityGoogle Scholar
  4. Chawla MK, Lin G, Olson K, Vazdarjanova A, Burke SN, McNaughton BL, Worley PF, Guzowski JF, Roysam B, Barnes CA (2004) 3D-catFISH: a system for automated quantitative three-dimensional compartmental analysis of temporal gene transcription activity imaged by fluorescence in situ hybridization. J Neurosci Methods 139:13–24Google Scholar
  5. Crimmins TR (1985) Geometric filter for speckle reduction. Appl Opt 24:1438–1443Google Scholar
  6. Driever W, Nüsslein-Volhard C (1988) A gradient of Bicoid protein in Drosophila embryos. Cell 54:83–93Google Scholar
  7. Fleming MG (1996) Design of a high resolution image cytometer with open software architecture. Anal Cell Pathol 10:1–11Google Scholar
  8. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  9. Harlow E, Lane D (1999) Tagging proteins. In: Cuddihy J, Kuhlman T, Barker P (eds) Using antibodies. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 101–149Google Scholar
  10. Hewitt GF, Strunk B, Margulies C, Priputin T, Wang XD, Amey R, Pabst B, Kosman D, Reinitz J, Arnosti DN (1999) Transcriptional repression by the Drosophila Giant protein: cis element positioning provides an alternative means of interpreting an effector gradient. Development 126:1201–1210Google Scholar
  11. Houchmandzadeh B, Wieschaus E, Leibler S (2002) Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415:798–802Google Scholar
  12. Hu M-K (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory IT-8:179–187Google Scholar
  13. Jaeger J, Blagov M, Kosman D, Kozlov KN, Manu, Myasnikova E, Surkova S, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004a) Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster. Genetics 167:1721–1737Google Scholar
  14. Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, Manu, Myasnikova E, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004b) Dynamic control of positional information in the early Drosophila embryo. Nature 430:368–371Google Scholar
  15. Knowles DW, Keranen S, Biggin MD, Sudar D (2002) Mapping organism expression levels at cellular resolution in developing Drosophila. In: Three-dimensional and multidimensional microscopy: image acquisition and processing IX. SPIE Proceedings, vol 4621, pp 57–64Google Scholar
  16. Kosman D, Reinitz J, Sharp DH (1997) Automated assay of gene expression at cellular resolution. In: Proceedings of the 1998 Pacific Symposium on Biocomputing. PSB Proceedings, pp 6–17Google Scholar
  17. Kosman D, Small S, Reinitz J (1998) Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins. Dev Genes Evol 208:290–294Google Scholar
  18. Lawrence PA (1992) The making of a fly. Blackwell, OxfordGoogle Scholar
  19. Mjolsness E, Sharp DH, Reinitz J (1991) A connectionist model of development. J Theor Biol 152:429–453Google Scholar
  20. Myasnikova E, Samsonova A, Kozlov K, Samsonova M, Reinitz J (2001) Registration of the expression patterns of Drosophila segmentation genes by two independent methods. Bioinformatics 17:3–12Google Scholar
  21. Myasnikova E, Samsonova M, Kosman D, Reinitz J (2005) Removal of background signal from in situ data on the expression of segmentation genes in Drosophila. Dev Genes Evol DOI: 10.1007/s00427-005-0472-2Google Scholar
  22. Ortiz de Solórzano C, Garcia Rodriguez E, Jones A, Pinkel D, Gray JW, Sudar D, Lockett SJ (1999) Segmentation of confocal microscope images of cell nuclei in thick tissue sections. J Microsc 193:212–226Google Scholar
  23. Ortiz de Solórzano C, Malladi R, Lelièvre SA, Lockett SJ (2001) Segmentation of nuclei and cells using membrane related protein markers. J Microsc 201:404–415Google Scholar
  24. Poustelnikova E, Pisarev A, Blagov M, Samsonova M, Reinitz J (2004) A database for management of gene expression data in situ. Bioinformatics 20:2212–2221Google Scholar
  25. Rasure J, Young M (1992) Open environment for image processing and software development. In: Image Processing and Interchange, SPIE Proceedings, vol 1659, pp 300–310Google Scholar
  26. Reinitz J, Hou S, Sharp DH (2003) Transcriptional control in Drosophila. Complexus 1:54–64Google Scholar
  27. Shen J, Castan S (1986) An optimal linear operator for edge detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp 109–114Google Scholar
  28. Spirov AV, Holloway D (2003) Making the body plan: precision in the genetic hierarchy of Drosophila embryo segmentation. In Silico Biol 3:89–100Google Scholar
  29. Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker SE, Rubin GM (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3(12):RESEARCH0088Google Scholar
  30. Umesh Adiga PS, Chaudhuri BB (1999) Efficient cell segmentation tool for confocal microscopy tissue images and quantitative evaluation of FISH signal. Microsc Res Tech 44:49–68Google Scholar
  31. Vincent L (1993) Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. In IEEE Transactions Image on Processing volume 2, pp 176–201Google Scholar
  32. Wu X, Vasisht V, Kosman D, Reinitz J, Small S (2001) Thoracic patterning by the Drosophila gap gene hunchback. Dev Biol 237:79–92Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Hilde Janssens
    • 1
  • Dave Kosman
    • 2
  • Carlos E. Vanario-Alonso
    • 1
    • 3
  • Johannes Jaeger
    • 1
  • Maria Samsonova
    • 4
  • John Reinitz
    • 1
  1. 1.Department of Applied Mathematics and Statistics, and Center for Developmental GeneticsStony Brook UniversityStony BrookUSA
  2. 2.Department of BiologyUniversity of CaliforniaSan DiegoUSA
  3. 3.Universidade Federal do Rio de JaneiroInstituto de Biofísica Carlos Chagas FilhoRio de JaneiroBrazil
  4. 4.Department of Computational Biology, Center of Advanced StudiesSt. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations