Development Genes and Evolution

, Volume 216, Issue 4, pp 209–223

Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs)

Original Article

Abstract

This study sets out to provide a systematic analysis of the development of the primordial central nervous system (CNS) in embryos of two decapod crustaceans, the Australian crayfish Cherax destructor (Malacostraca, Decapoda, Astacida) and the parthenogenetic Marbled crayfish (Marmorkrebs, Malacostraca, Decapoda, Astacida) by histochemical labelling with phalloidin, a general marker for actin. One goal of our study was to examine the neurogenesis in these two organisms with a higher temporal resolution than previous studies did. The second goal was to explore if there are any developmental differences between the parthenogenetic Marmorkrebs and the sexually reproducing Australian crayfish. We found that in the embryos of both species the sequence of neurogenetic events and the architecture of the embryonic CNS are identical. The naupliar neuromeres proto-, deuto-, tritocerebrum, and the mandibular neuromeres emerge simultaneously. After this “naupliar brain” has formed, there is a certain time lag before the maxilla one primordium develops and before the more caudal neuromeres follow sequentially in the characteristic anterior–posterior gradient. Because the malacostracan egg-nauplius represents a re-capitulation of a conserved ancestral information, which is expressed during development, we speculate that the naupliar brain also conserves an ancestral piece of information on how the brain architecture of an early crustacean or even arthropod ancestor may have looked like. Furthermore, we compare the architecture of the embryonic crayfish CNS to that of the brain and thoracic neuromeres in insects and discuss the similarities and differences that we found against an evolutionary background.

Keywords

Arthropoda Axogenesis Evolution Neurogenesis Naupliar brain 

References

  1. Bastiani M, Pearson KG, Goodman CS (1984) From embryonic fascicles to adult tracts: organization of neuropile from a developmental perspective. J Exp Biol 112:45–64PubMedGoogle Scholar
  2. Bastiani MJ, Harrelson AL, Snow PM, Goodman CS (1987) Expression of fasciclin I and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper. Cell 48:745–755PubMedCrossRefGoogle Scholar
  3. Beltz BS, Pontes M, Helluy SM, Kravitz EA (1990) Patterns of appearance of serotonin and proctolin immunoreactivities in the developing nervous system of the American lobster. J Neurobiol 21:521–542PubMedCrossRefGoogle Scholar
  4. Beltz BS, Helluy S, Ruchhoeft ML, Gammil LS (1992) Aspects of the embryology and neural development of the American lobster. J Exp Zool 261:288–297PubMedCrossRefGoogle Scholar
  5. Boyan G, Therianos S, Williams JLD, Reichert H (1995) Axogenesis in the embryonic brain of the grasshopper Schistocerca gregaria: an identified cell analysis of early brain development. Development 121:75–86PubMedGoogle Scholar
  6. Boyan GS, Reichert H, Hirth F (2003) Commissure formation in the embryonic insect brain. Arthropod Struct Dev 32:61–78PubMedCrossRefGoogle Scholar
  7. Dumont JPC, Wine JJ (1987) The telson flexor neuromuscular system of the crayfish. II. Segment-specific differences in connectivity between premotor neurones and the motor giants. J Exp Biol 127:279–294Google Scholar
  8. Elofsson R (1969) The development of the compound eyes of Penaeus duorarum (Crustacea: Decapoda) with remarks on the nervous system. Z Zellforsch Mikrosk Anat 97:323–350PubMedCrossRefGoogle Scholar
  9. Fanenbruck M (2003) Die Anatomie des Kopfes und des cephalen Skelett-Muskelsystems der Crustacea, Myriapoda und Hexapoda: Ein Beitrag zum phylogenetischen System der Mandibulata und zur Kenntnis der Herkunft der Remipedia und Tracheata. Ph.D. Thesis, Ruhr-Universität Bochum (Germany)http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/FanenbruckMartin/
  10. Fénelon VS, Casanovas B, Faumont S, Meyrand P (1998) Ontogenetic alteration in peptidergic expression within a stable neuronal population in lobster stomatogastric nervous system. J Comp Neurol 399:289–305PubMedCrossRefGoogle Scholar
  11. Garzino V, Reichert H (1994) Early embryonic expression of a 60-kD glycoprotein in the developing nervous system of the lobster. J Comp Neurol 346:572–582PubMedCrossRefGoogle Scholar
  12. Gerberding M, Scholtz G (2001) Neurons and glia in the midline of the higher crustacean Orchestia cavimana are generated via an invariant cell lineage that comprises a median neuroblast and glial progenitors. Dev Biol 235:397–409PubMedCrossRefGoogle Scholar
  13. Graf S, Ludwig P, Boyan G (2000) Lazarillo expression reveals a subset of neurons contributing to the primary axon scaffold of the embryonic brain of the grasshopper Schistocerca gregaria. J Comp Neurol 419:394–405PubMedCrossRefGoogle Scholar
  14. Hartmann B, Reichert H (1998) The genetics of embryonic brain development in Drosophila. Mol Cell Neurosci 12:194–205PubMedCrossRefGoogle Scholar
  15. Harzsch S (2001) Neurogenesis in the crustacean ventral nerve cord: homology of neuronal stem cells in Malacostraca and Branchiopoda? Evol Dev 3:154–169PubMedCrossRefGoogle Scholar
  16. Harzsch S (2002) From stem cell to structure: neurogenesis in the CNS of decapod crustaceans. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin Heidelberg New York, pp 417–432Google Scholar
  17. Harzsch S (2003) Ontogeny of the ventral nerve cord in malacostracan crustaceans: a common plan for neuronal development in Crustacea, Hexapoda and other Arthropoda? Arthropod Struct Dev 32:17–37PubMedCrossRefGoogle Scholar
  18. Harzsch S (2004a) The arthropod tritocerebrum: a “non-drosophilocentric” perspective. Evol Dev 6:303–309PubMedCrossRefGoogle Scholar
  19. Harzsch S (2004b) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships. J Morphol 259:198–213PubMedCrossRefGoogle Scholar
  20. Harzsch S, Anger K, Dawirs RR (1997) Immunocytochemical detection of acetylated a-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 41:477–484PubMedGoogle Scholar
  21. Harzsch S, Miller J, Benton J, Dawirs R, Beltz B (1998) Neurogenesis in the thoracic neuromeres of two crustaceans with different styles of metamorphic development. J Exp Biol 201:2465–2479PubMedGoogle Scholar
  22. Harzsch S, Miller J, Benton J, Beltz B (1999) From embryo to adult: persistent neurogenesis and apoptotic cell death shape the developing crustacean deutocerebrum. J Neurosci 19:3472–3485PubMedGoogle Scholar
  23. Harzsch S, Benton J, Beltz B (2000) An unusual case of a mutant lobster embryo with double brain and double ventral nerve cord. Arthropod Struct Dev 29:95–99PubMedCrossRefGoogle Scholar
  24. Helluy SM, Sandeman R, Beltz B, Sandeman D (1993) Comparative brain ontogeny of the crayfish and clawed lobster-implications of direct and larval development. J Comp Neurol 335:343–354PubMedCrossRefGoogle Scholar
  25. Helluy SM, Ruchhoeft ML, Beltz BS (1995) Development of the olfactory and accessory lobes in the American lobster: an allometric analysis and its implications for the deutocerebral structure of decapods. J Comp Neurol 357:433–445PubMedCrossRefGoogle Scholar
  26. Helluy SM, Benton JL, Langworthy KA, Ruchhoeft ML, Beltz BS (1996) Glomerular organization in the developing olfactory and accessory lobes of the American lobster: stabilization of numbers and increase in size after metamorphosis. J Neurobiol 29:459–472PubMedCrossRefGoogle Scholar
  27. Hirth F, Reichert H (1999) Conserved genetic programs in insect and mammalian brain development. BioEssays 21:677–684PubMedCrossRefGoogle Scholar
  28. Hummel T, Schimmelpfennig K, Klämbt C (1999a) Commissure formation in the embryonic CNS of Drosophila. I. Identification of the required gene functions. Dev Biol 209:381–398PubMedCrossRefGoogle Scholar
  29. Hummel T, Schimmelpfennig K, Klämbt C (1999b) Commissure formation in the embryonic CNS of Drosophila. II. Function of the different midline cells. Development 126:771–779PubMedGoogle Scholar
  30. Jia XX, Siegler MF (2002) Midline lineages in grasshopper produce neuronal siblings with asymmetric expression of engrailed. Development 129:5181–5193PubMedGoogle Scholar
  31. Kammermeier L, Reichert H (2001) Common developmental genetic mechanisms for patterning invertebrate and vertebrate brains. Brain Res Bull 55:675–682PubMedCrossRefGoogle Scholar
  32. Kilman V, Fénelon VS, Richards KS, Thirumalai V, Meyrand P, Marder E (1999) Sequential developmental acquisition of cotransmitters in identified sensory neurons of the stomatogastric nervous system of the lobsters, Homarus americanus and Homarus gammarus. J Comp Neurol 408:318–334PubMedCrossRefGoogle Scholar
  33. Klämbt C, Goodman CS (1991) Role of midline glia and neurons in the formation of the axon commissures in the central nervous system of the Drosophila embryo. Ann N Y Acad Sci 633:142–159PubMedCrossRefGoogle Scholar
  34. Klämbt C, Jacobs JR, Goodman CS (1991) The midline of the Drosophila central nervous system: a model for the genetic analysis of cell fate, cell migration, and growth cone guidance. Cell 64:801–815PubMedCrossRefGoogle Scholar
  35. Klagges BRE, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner S, Buchner E (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16:3154–3165PubMedGoogle Scholar
  36. Lichtneckert R, Reichert H (2005) Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity 94:465–477PubMedCrossRefGoogle Scholar
  37. Meier T, Reichert H (1990) Neuronal development in the crustacean nervous system studied by neuron-specific antibody labelling. In: Kennedy K (ed) Frontiers in crustacean neuroscience. Birkhauser, Basel, pp 523–529Google Scholar
  38. Menne TV, Klämbt C (1994) The formation of commissures in the Drosophila CNS depends on midline cells and on the Notch gene. Development 120:123–133PubMedGoogle Scholar
  39. Mittmann B, Scholtz G (2003) Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 213:9–17PubMedGoogle Scholar
  40. Nassif C, Noveen A, Hartenstein V (1998) Embryonic development of the Drosophila brain. I. Pattern of pioneer tracts. J Comp Neurol 402:10–31PubMedCrossRefGoogle Scholar
  41. Page DT (2004) A mode of arthropod brain evolution suggested by Drosophila commissure development. Evol Dev 6:25–31PubMedCrossRefGoogle Scholar
  42. Patel NH, Snow PM, Goodman CS (1987) Characterization and cloning of fasciclin III: a glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell 48:975–988PubMedCrossRefGoogle Scholar
  43. Reichert H (2002) Conserved genetic mechanisms for embryonic brain patterning. Int J Dev Biol 46:81–87PubMedGoogle Scholar
  44. Reichert H, Simeone A (2001) Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philos Trans R Soc Lond B 356:1533–1544CrossRefGoogle Scholar
  45. Sánchez D, Ganfornina MD, Bastiani MJ (1995) Developmental expression of the lipocalin Lozarillo and its role in axonal pathfinding in the grasshopper embryo. Development 121:135–147PubMedGoogle Scholar
  46. Sandeman RE, Sandeman DC (1990) Development and identified neural systems in the crayfish brain. In: Kennedy K (ed) Frontiers in crustacean neuroscience. Birkhauser, Basel, pp 498–508Google Scholar
  47. Sandeman R, Sandeman D (1991) Stages in the development of the embryo of the fresh-water crayfish Cherax destructor. Roux’s Arch Dev Biol 200:27–37CrossRefGoogle Scholar
  48. Schneider H, Budhiraja P, Walter I, Beltz BS, Peckol E, Kravitz EA (1996) Developmental expression of the octopamine phenotype in lobsters, Homarus americanus. J Comp Neurol 371:3–14PubMedCrossRefGoogle Scholar
  49. Scholtz G (1995a) Expression of the engrailed gene reveals nine putative segment-anlagen in the embryonic pleon of the freshwater crayfish Cherax destructor (Crustacea, Malacostraca, Decapoda). Biol Bull 188:157–165CrossRefGoogle Scholar
  50. Scholtz G (1995b) Head segmentation in Crustacea—an immunocytochemical study. Zoology 98:104–114Google Scholar
  51. Scholtz G (2000) Evolution of the nauplius stage in malacostracan crustaceans. J Zoolog Syst Evol Res 38:175–187CrossRefGoogle Scholar
  52. Scholtz G, Braband A, Tolley L, Reimann A, Mittmann B, Lukhaup C, Steuerwald F, Vogt G (2003) Parthenogenesis in an outsider crayfish. Nature 421:806PubMedCrossRefGoogle Scholar
  53. Sprecher SG, Reichert H (2003) The urbilaterian brain: developmental insights into the evolutionary origin of the brain in insects and vertebrates. Arthropod Struct Dev 2003:141–156CrossRefGoogle Scholar
  54. Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G (2005) Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zoolog A Comp Exp Biol 303:393–405PubMedCrossRefGoogle Scholar
  55. Thomas JB, Bastiani MJ, Bate M, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310:203–207PubMedCrossRefGoogle Scholar
  56. Tierney AJ (2003) Introduction to the crayfish nervous system: from histology to function. Microsc Res Tech 60:251–252CrossRefGoogle Scholar
  57. Vogt G, Tolley L (2004) Brood care in freshwater crayfish and relationship with the offspring’s sensory deficiencies. J Morphol 262(2):566–582PubMedCrossRefGoogle Scholar
  58. Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (Marbled Crayfish), the first parthenogenetic decapod crustacean. J Morphol 261(3):286–311PubMedCrossRefGoogle Scholar
  59. Walossek D (1999) On the Cambrian diversity of Crustacea. In Schram FR, von Vaupel Klein JC (eds) Crustaceans and the biodiversity crisis, proceedings of the Fourth International Crustacean Congress. Kononklijke Brill NV, Leiden, pp 3–27Google Scholar
  60. Whitington PM (2004) The development of the crustacean nervous system. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea, Crustacean issues vol. 15. AA Balkema, Netherlands, pp 135–167Google Scholar
  61. Whitington PM, Meier T, King P (1991) Segmentation, neurogenesis and formation of early axonal pathways in the centipede, Estmostigmus rubripes (Brandt). Roux’s Arch Dev Biol 199:349–363CrossRefGoogle Scholar
  62. Whitington PM, Leach D, Sandeman R (1993) Evolutionary change in neural development within the Arthropoda: axogenesis in the embryos of two crustaceans. Development 118:449–461PubMedGoogle Scholar
  63. Whitington PM, Harris K-L, Leach D (1996) Early axogenesis in the embryo of a primitive insect, the silverfish Ctenolepisma longicaudata. Roux’s Arch Dev Biol 205:272–281CrossRefGoogle Scholar
  64. Wildeman B, Reichert H, Bicker G (1997) Embryonic brain tract formation in Drosophila melanogaster. Dev Genes Evol 206:536–540CrossRefGoogle Scholar
  65. Zehnder H (1934a) Über die Embryonalentwicklung des Fluβkrebses. Teil 1: Die ersten Stadien der Embryonalentwicklung von Astacus fluviatilis (Rond.) L. und Astacus torrentium (Schrank) vom unbefruchteten Ei bis zur Gastrulation. Acta Zool 15:1–83Google Scholar
  66. Zehnder H (1934b) Über die Embryonalentwicklung des Fluβkrebses. Teil 2: Die Ausbildung der äuβeren Körperform von Astacus fluviatilis (Rond.) L. und Astacus torrentium (Schrank) von der Gastrulation bis zum entwickelten Tier. Acta Zool 15:85–148CrossRefGoogle Scholar
  67. Zinn K, Mc Allister L, Goodman CS (1988) Sequence analysis and neuronal expression of fasciclin I in grasshopper and Drosophila. Cell 53:577–587PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Fakultät für Naturwissenschaften, Abteilung Neurobiologie und Sektion Biosystematische DokumentationUniversität UlmUlmGermany

Personalised recommendations