vasa mRNA accumulates at the posterior pole during blastoderm formation in the flour beetle Tribolium castaneum

  • Reinhard SchröderEmail author
Short Communication


The correct specification of germ cells during embryogenesis is a fundamental step in life that ensures the existence of the next generation. Although different species display various cellular modes of generating germ cells, the product of the vasa gene proves to be a reliable marker of primordial germ cells in metazoans [Extavour and Akam (2003) 130:5869–5884; Raz (2000) 1:1017]. Here, I report the isolation of the vasa ortholog from the red flour beetle Tribolium castaneum, named Tc-vasa, and describe its sequence, its genomic organisation and its expression pattern during early embryogenesis. Unlike in Drosophila where vasa messenger RNA (mRNA) is ubiquitously distributed in the egg, Tc-vasa mRNA gradually accumulates at the posterior egg pole during blastoderm formation. Shortly before gastrulation, Tc-vasa mRNA marks a group of intra-blastodermal cells at the posterior pole. In the germ rudiment, a ball-like group of vasa-positive cells adheres to the growth zone at the posterior end of the embryo. These vasa-positive cells likely represent the primordial germ cells that have not been described in Tribolium prior to gonad formation. At the beginning of germ growth, a small band of vasa-positive cells starts to migrate along the dorsal side of the growth zone. vasa transcription ceases during further germ band extension. In contrast to Drosophila, Tc-vasa transcripts cannot be detected in the germ cells within the gonadal anlage after segmentation is completed.


vasa Tribolium DEAD-box protein Primordial germ cells mRNA localisation 



I am grateful to T. Mader for assisting in the molecular work, to U. Reichert for his expertise in staining and sectioning embryos, to R. Reuter for discussions and to A. Beermann and C. Donohoe for carefully reading the manuscript. Part of this work was funded by a Deutsche Forschungsgemeinschaft grant to R.S. (Schr-1. 1–3).


  1. Anderson DT (1972) The development of holometabolous insects. In: Counce SJ, Waddington CH (eds) Developmental systems: insects. Academic, London, pp 166–242Google Scholar
  2. Bartfai R, Orban L (2003) The vasa locus in zebrafish: multiple RGG boxes from duplications. DNA Cell Biol 22:47–54CrossRefPubMedGoogle Scholar
  3. Berghammer AJ, Klingler M, Wimmer EA (1999) A universal marker for transgenic insects. Nature 402:370–371CrossRefPubMedGoogle Scholar
  4. Braat AK, Zandbergen T, van de Water S, Goos HJ, Zivkovic D (1999) Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev Dyn 216:153–167CrossRefPubMedGoogle Scholar
  5. Breitwieser W, Markussen FH, Horstmann H, Ephrussi A (1996) Oskar protein interaction with vasa represents an essential step in polar granule assembly. Genes Dev 10:2179–2188CrossRefPubMedGoogle Scholar
  6. Butt FH (1949) Embryology of the milkweed bug, Oncopeltus fasciatus (Hemiptera). Cornell Experiment Stn Mem 283:2–43Google Scholar
  7. Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358:387–392CrossRefPubMedGoogle Scholar
  8. Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884CrossRefPubMedGoogle Scholar
  9. Extavour CG, Pang K, Matus DQ, Martindale MQ (2005) vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evol Dev 7:201–215CrossRefPubMedGoogle Scholar
  10. Fujimura M, Takamura K (2000) Characterization of an ascidian DEAD-box gene, Ci-DEAD1: specific expression in the germ cells and its mRNA localization in the posterior-most blastomeres in early embryos. Dev Genes Evol 210:64–72CrossRefPubMedGoogle Scholar
  11. Gururajan R, Mathews L, Longo FJ, Weeks DL (1994) An3 mRNA encodes an RNA helicase that colocalizes with nucleoli in Xenopus oocytes in a stage-specific manner. Proc Natl Acad Sci U S A 91:2056–2060CrossRefPubMedGoogle Scholar
  12. Gururajan R, Perry-O’Keefe H, Melton DA, Weeks DL (1991) The Xenopus localized messenger RNA An3 may encode an ATP-dependent RNA helicase. Nature 349:717–719CrossRefPubMedGoogle Scholar
  13. Haget A (1953) Analyse expérimentale des facteurs de la morphogenèse embryonnaire chez le coléoptère Leptinotarsa. Bull biol Fr Belg 87:123–217Google Scholar
  14. Handel K, Basal A, Fan X, Roth S (2005) Tribolium castaneum twist: gastrulation and mesoderm formation in a short-germ beetle. Dev Genes Evol 215:13–31CrossRefPubMedGoogle Scholar
  15. Handel K, Grünfelder CG, Roth S, Sander K (2000) Tribolium embryogenesis: a SEM study of cell shapes and movements from blastoderm to serosal closure. Dev Genes Evol 210:167–179CrossRefPubMedGoogle Scholar
  16. Hay B, Ackermann L, Barbel S, Jan LY, Jan YN (1988a) Identification of a component of Drosophila polar granules. Development 103:625–640PubMedGoogle Scholar
  17. Hay B, Jan LY, Jan YN (1988b) A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55:577–587CrossRefPubMedGoogle Scholar
  18. Hodson AC (1934) The origin an differentiation of the sex organs of Tribolium confusum (Duval). Ann Entomol Soc Am 27:278–291Google Scholar
  19. Ilmensee K, Mahowald A (1974) Transplantation of posterior pole plasm in Drosophila: induction of germ cells at the anterior of the egg. Proc Natl Acad Sci U S A 71:1016–1020CrossRefGoogle Scholar
  20. Kiledjian M, Dreyfuss G (1992) Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 11:2655–2664PubMedGoogle Scholar
  21. Klag J (1982) Germ line of Tetrodontophora bielanensis (Insecta, Collembola). Ultrastructural study on the origin of primordial germ cells. J Embryol Exp Morphol 72:183–195PubMedGoogle Scholar
  22. Knaut H, Pelegri F, Bohmann K, Schwarz H, Nüsslein-Volhard C (2000) Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J Cell Biol 149:875–888CrossRefPubMedGoogle Scholar
  23. Krause G (1958) Induktionssysteme in der Embryonalentwicklung von Insekten. Ergeb Biol 20:159–198Google Scholar
  24. Krovel AV, Olsen LC (2004) Sexual dimorphic expression pattern of a splice variant of zebrafish vasa during gonadal development. Dev Biol 271:190–197CrossRefPubMedGoogle Scholar
  25. Lasko PF, Ashburner M (1988) The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 225:611–617CrossRefGoogle Scholar
  26. Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schier J, Slonimski PP (1989) Birth of the D-E-A-D box. Nature 337:121–122CrossRefPubMedGoogle Scholar
  27. Nakao H (1999) Isolation and characterization of a Bombyx vasa-like gene. Dev Genes Evol 209:312–316CrossRefPubMedGoogle Scholar
  28. Okada M, Kleinman IA, Schneiderman HA (1974) Restoration of fertility in sterilized Drosophila eggs by transplantation of polar cytoplasm. Dev Biol 37:43–54CrossRefPubMedGoogle Scholar
  29. Olsen LC, Aasland R, Fjose A (1997) A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech Dev 66:95–105CrossRefPubMedGoogle Scholar
  30. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  31. Pelegri F, Knaut H, Maischein HM, Schulte-Merker S, Nüsslein-Volhard C (1999) A mutation in the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization. Curr Biol 9:1431–1440CrossRefPubMedGoogle Scholar
  32. Pokrywka NJ (1995) RNA localization and the cytoskeleton in Drosophila oocytes. Curr Top Dev Biol 31:139–166PubMedCrossRefGoogle Scholar
  33. Raz E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1:reviews1017.1-1017.6,  doi:10.1186/gb-2000-1-3-reviews1017
  34. Saffman EE, Lasko P (1999) Germline development in vertebrates and invertebrates. Cell Mol Life Sci 55:1141–1163CrossRefPubMedGoogle Scholar
  35. Smith LD (1966) The role of a “germinal plasm” in the formation of primordial germ cells in Rana pipiens. Dev Biol 14:330–347CrossRefGoogle Scholar
  36. Stanke M, Waack S (2003) Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19(Suppl 2):II215–II225PubMedGoogle Scholar
  37. Stanley MSM, Grundmann AW (1970) The embryonic development of Tribolium confusum. Ann Entomol Soc Am 63:1248–1256Google Scholar
  38. Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969Google Scholar
  39. Ullmann S (1964) The origin and structure of the mesoderm and the formation of the coelomic sacs in Tenebrio molitor L. (Insecta, Coleoptera). Philos Trans R Soc Ser B 248:245–277CrossRefGoogle Scholar
  40. Wylie C (1999) Germ cells. Cell 96:165–174CrossRefPubMedGoogle Scholar
  41. Yoon C, Kawakami K, Hopkins N (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124:3157–3165PubMedGoogle Scholar
  42. Zhurov V, Terzin T, Grbic M (2004) Early blastomere determines embryo proliferation and caste fate in a polyembryonic wasp. Nature 432:764–769CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Interfakultäres Institut für ZellbiologieAbt. Genetik der TiereTübingenGermany

Personalised recommendations