Development Genes and Evolution

, Volume 216, Issue 4, pp 169–184 | Cite as

Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida)

  • Frederike Alwes
  • Gerhard Scholtz
Original Article


The early development of the parthenogenetic Marmorkrebs (marbled crayfish) is described with respect to external morphology, cell lineage, and segment formation. Due to its parthenogenetic reproduction mode, the question arises whether or not the marbled crayfish is a suitable model organism for developmental approaches. To address this question, we describe several aspects of the embryonic development until hatching. We establish ten stages based on characteristic external changes in the living eggs such as blastoderm formation, gastrulation process, formation and differentiation of the naupliar and post-naupliar segments, limb bud differentiation, and eye differentiation. The study of the post-naupliar cell division patterns, segment formation, and engrailed expression reveals distinct similarities to that of other freshwater crayfish. On this basis, we evaluate the possibility of a generalization of ontogenetic processes in the Marmorkrebs for either freshwater crayfish or other crustacean developmental systems.


Marbled crayfish Segmentation Cell lineage Engrailed Astacida 



We are very grateful to Gabriele Drescher and to Wilfrid Bleiss, for the technical support using the SEM. We thank Greg Edgecombe for improving the English of the manuscript. We also thank Julia Pint for providing the photographs in Fig. 5h,i.


  1. Abzhanov A, Kaufman TC (2000a) Embryonic expression patterns of the Hox gene of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283PubMedCrossRefGoogle Scholar
  2. Abzhanov A, Kaufman TC (2000b) Evolution of distinct expression patterns for engrailed paralogues in higher crustaceans (Malacostraca). Dev Genes Evol 210:439–506Google Scholar
  3. Ahyong ST, O’Meally D (2004) Phylogeny of the Decapoda Reptantia: resolution using three molecular loci and morphology. Raffles Bull Zool 52:673–693Google Scholar
  4. Bentley D, Keshishian H, Shankland M, Toroian-Raymond A (1979) Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J Embryol Exp Morphol 54:47–74PubMedGoogle Scholar
  5. Braband A, Kawai T, Scholtz G (2006) The phylogenetic position of the East Asian freshwater crayfish Cambaroides within the Northern Hemisphere Astacoidea (Crustacea, Decapoda, Astacida) based on molecular data. J Zool Syst Evol Res (in press)Google Scholar
  6. Browne WE, Price AL, Gerberding M, Patel NH (2005) Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis 42:124–149PubMedCrossRefGoogle Scholar
  7. Celada JD, de Paz P, Gaudioso VR, Fernández R (1987) Embryonic development of the freshwater crayfish (Pacifastacus leniusculus Dana): a scanning electron microscopic study. Anat Rec 219:304–310PubMedCrossRefGoogle Scholar
  8. Celada JD, Carral JM, Gonzales J (1991) A study on the identification and chronology of the embryonic stages of the freshwater crayfish Austropotamobius pallipes (Lereboullet, 1858). Crustaceana 61:225–232CrossRefGoogle Scholar
  9. Crandall KA, Harris DJ, Fetzner JW (2000) The monophyletic origin of freshwater crayfish estimated from nuclear and mitochondrial DNA sequences. Proc R Soc Lond B 267:1679–1686CrossRefGoogle Scholar
  10. Dixon CJ, Ahyong ST, Schram FR (2003) A new hypothesis of decapod phylogeny. Crustaceana 76:935–975CrossRefGoogle Scholar
  11. Dohle W, Scholtz G (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development 104(Suppl):147–160Google Scholar
  12. Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Crustacean issues 15: evolutionary developmental biology of Crustacea. Lisse, Balkema, pp 95–133Google Scholar
  13. Fioroni P (1969) Zum embryonalen und postembryonalen Dotteraufbau des Flusskrebses (Astacus; Crustacea, Malacostraca, Decapoda). Rev Suisse Zool 47:919–946Google Scholar
  14. Fioroni P (1970) Am dotteraufschluβ beteiligte Organe und Zelltypen bei höheren Krebsen; der Versuch zu einer einheitlichen Terminologie. Zool Jb Anat 87:481–522Google Scholar
  15. Fulinski B (1908) Beiträge zur embryonalen Entwicklung des Fluβkrebses. Zool Anz 33:20–28Google Scholar
  16. García-Guerrero M, Hendrickx ME, Villarreal H (2003) Description of the embryonic development of Cherax quadricarinatus (von Martens, 1868) (Decapoda, Parastacidae), based on the staging method. Crustaceana 76:269–280CrossRefGoogle Scholar
  17. Gerberding M (1997) Germ band formation and early neurogenesis of Leptodora kindti (Cladocera): first evidence for neuroblasts in the entomostracan crustaceans. Invertebr Reprod Dev 32:63–73Google Scholar
  18. Harlioğlu MM (2002) The first report on the occurrence of twins in a freshwater crayfish, Pacifastacus leniusculus (Decapoda, Astacoidea). Folia Biol (Krakow) 50:215–216Google Scholar
  19. Harzsch S, Benton J, Beltz BS (2000) An unusual case of a mutant lobster embryo with double brain and double ventral nerve cord. Arthropod Struct Dev 29:95–99PubMedCrossRefGoogle Scholar
  20. Hejnol A, Scholtz G (2004) Clonal analysis of distal-less and engrailed expression patterns during early morphogenesis of uniramous and biramous crustacean limbs. Dev Genes Evol 214:473–485PubMedGoogle Scholar
  21. Helluy SM, Beltz BS (1991) Embryonic development of the American Lobster (Homarus americanus): quantitative staging and characterization of an embryonic molt cycle. Biol Bull 180:355–371CrossRefGoogle Scholar
  22. Herrick FH (1895) The American lobster: a study of its habits and development. Bull US Fish Comm 15:1–252(pl 54)Google Scholar
  23. Huxley TH (1880) The crayfish: an introduction in the study of zoology. C. Kegan Paul & Co., LondonGoogle Scholar
  24. Jara CG, Palacios VL (2001) Occurrence of conjoined twins in Aegla abtao Schmitt, 1942 (Decapoda, Anomura, Aeglidae). Crustaceana 74:1059–1065CrossRefGoogle Scholar
  25. Lereboullet A (1862) Recherches d’embryologie comparée sur le développement du brochet, de la perche et de l’écrevisse. Mém Acad Sci Inst Fr 17:447–805Google Scholar
  26. Manton SM (1928) On the embryology of a mysid crustacean Hemimysis lamornae. Philos Trans R Soc Lond B 216:363–463CrossRefGoogle Scholar
  27. Manton SM (1934) On the embryology of the crustacean Nebalia bipes. Philos Trans R Soc Lond B 498:163–238CrossRefGoogle Scholar
  28. Olesen J, Richter S, Scholtz G (2003) On the ontogeny of Leptodora kindtii (Crustacea, Branchiopoda, Cladocera), with notes on the phylogeny of the Cladocera. J Morphol 256:235–259PubMedCrossRefGoogle Scholar
  29. Patel NH, Kornberg TB, Goodman CS (1989a) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212PubMedGoogle Scholar
  30. Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989b) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58:955–968PubMedCrossRefGoogle Scholar
  31. Porter ML, Pérez-Losada M, Crandall KA (2005) Model-based multi-locus estimation of decapod phylogeny and divergence times. Mol Phylogenet Evol (in press)Google Scholar
  32. Rathke H (1829) Untersuchungen über die Bildung und Entwicklung des Flusskrebses. Voss, LeipzigGoogle Scholar
  33. Reichenbach H (1888) Zur Embryonalentwicklung des Fluβkrebses. Abh Senckenb Naturforsch Ges 14:1–137Google Scholar
  34. Sandeman R, Sandeman D (1991) Stages in the development of the embryo of the fresh-water crayfish Cherax destructor. Dev Biol 200:27–37Google Scholar
  35. Sars GO (1873) Om en dimorph udvikling samt generationsvexel hos Leptodora. Forh Videnskapsselsk Kristiania 1–15Google Scholar
  36. Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Roux’s Arch Dev Biol 202:36–48CrossRefGoogle Scholar
  37. Scholtz G (1993) Teloblasts in decapod embryos: an embryonic character reveals the monophyletic origin of freshwater crayfishes (Crustacea, Decapoda). Zool Anz 230:45–54Google Scholar
  38. Scholtz G (1995) Expression of the engrailed gene reveals nine putative segment-anlagen in the embryonic pleon of the freshwater crayfish Cherax destructor (Crustacea, Malacostraca, Decapoda). Biol Bull 188:157–165CrossRefGoogle Scholar
  39. Scholtz G (1995) Ursprung und Evolution der Fluβkrebse (Crustacea, Astacida). Sber Ges Naturf Freund Berlin 34:93–115Google Scholar
  40. Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 317–332Google Scholar
  41. Scholtz G (2002) Phylogeny and evolution. In: DM Holdich (ed) Biology of freshwater crayfish. Blackwell Science, Oxford, pp 30–52Google Scholar
  42. Scholtz G (2005) Homology and ontogeny: pattern and process in comparative developmental biology. Theory Biosci 124:121–143.Google Scholar
  43. Scholtz G, Richter S (1995) Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca). Zool J Linn Soc 113:289–328CrossRefGoogle Scholar
  44. Scholtz G, Dohle W (1996) Cell lineage and cell fate in crustacean embryos—a comparative approach. Int J Dev Biol 40:211–220PubMedGoogle Scholar
  45. Scholtz G, Kawai T (2002) Aspects of embryonic and postembryonic development of the Japanese freshwater crayfish Cambaroides japonicus (Crustacea, Decapoda) including a hypothesis on the evolution of maternal care in the Astacida. Acta Zool (Stockh.) 83:203–212CrossRefGoogle Scholar
  46. Scholtz G, Dohle W, Sandeman RE, Richter S (1993) Expression of engrailed can be lost and regained in cells of one clone in crustacean embryos. Int J Dev Biol 37:299–304PubMedGoogle Scholar
  47. Scholtz G, Braband A, Tolley L, Reimann A, Mittmann B, Lukhaup C, Steuerwald F, Vogt G (2003) Parthenogenesis in an outsider crayfish. Nature 421:806PubMedCrossRefGoogle Scholar
  48. Schram FR (2001) Phylogeny of decapods: moving toward a consensus. Hydrobiologia 449:1–20CrossRefGoogle Scholar
  49. Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G (2005) Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool 303A:393–405CrossRefGoogle Scholar
  50. Shiino SM (1942) Studies on the embryology of Squilla oratoria de Haan. Mem Coll Sci 17:77–174Google Scholar
  51. Shiino SM (1968) I. Crustacea. In: Kumé M, Dan K (eds) Invertebrate embryology. Nolit, Belgrade,Yugoslavia 10, p 333–388Google Scholar
  52. Ungerer P, Wolff C (2005) External morphology of limb development in the amphipod Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Zoomorphology 124:89–99CrossRefGoogle Scholar
  53. Vogt G, Tolley L (2004) Brood care in freshwater crayfish and relationship with the offspring’s sensory deficiencies. J Morphol 262:566–582PubMedCrossRefGoogle Scholar
  54. Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J Morphol 261:286–311PubMedCrossRefGoogle Scholar
  55. Weygoldt P (1961) Beitrag zur Kenntnis der Ontogenie der Dekapoden: Embryologische Untersuchungen an Palaemonetes varians (Leach). Zool Jb Anat 79:223–270Google Scholar
  56. White RB, Lamey TM, Ziman M, Koenders A (2005) Isolation and expression analysis of a Pax group III gene from the crustacean Cherax destructor. Dev Genes Evol 215:306–312PubMedCrossRefGoogle Scholar
  57. Zehnder R (1934) Über die Embryonalentwicklung des Flusskrebses. Acta Zool 15:261–408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für Biologie/Vergleichende ZoologieHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations