Development Genes and Evolution

, Volume 215, Issue 10, pp 499–508 | Cite as

Expression of Pax group III genes in the honeybee (Apis mellifera)

Original Article

Abstract

Pax group III genes are involved in a number of processes during insect segmentation. In Drosophila melanogaster, three genes, paired, gooseberry and gooseberry-neuro, regulate segmental patterning of the epidermis and nervous system. Paired acts as a pair-rule gene and gooseberry as a segment polarity gene. Studies of Pax group III genes in other insects have indicated that their expression is a good marker for understanding the underlying molecular mechanisms of segmentation. We have cloned three Pax group III genes from the honeybee (Apis mellifera) and examined their relationships to other insect Pax group III genes and their expression patterns during honeybee segmentation. The expression pattern of the honeybee homologue of paired is similar to that of paired in Drosophila, but its expression is modulated by anterior–posterior temporal patterning similar to the expression of Pax group III proteins in Tribolium. The expression of the other two Pax group III genes in the honeybee indicates that they also act in segmentation and nervous system development, as do these genes in other insects.

Keywords

Honeybee Drosophila Evolution Development Segmentation Pax group 3/7 

References

  1. Altschul S, Gish W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefPubMedGoogle Scholar
  2. Beye M, Hartel S et al (2002) Specific developmental gene silencing in the honey bee using a homeobox motif. Insect Mol Biol 11(6):527–532CrossRefPubMedGoogle Scholar
  3. Binner P, Sander K (1997) Pair-rule patterning in the honeybee Apis mellifera; expression of even-skipped combines traits known from beetles and fruitfly. Dev Genes Evol 206:447–454CrossRefGoogle Scholar
  4. Breitling R, Gerber JK (2000) Origin of the paired domain. Dev Genes Evol 210(12):644–650CrossRefPubMedGoogle Scholar
  5. Brown SJ, Hilgenfeld RB et al (1994) The beetle Tribolium castaneum has a fushi tarazu homolog expressed in stripes during segmentation. Proc Natl Acad Sci U S A 91(26):12922–12926PubMedCrossRefGoogle Scholar
  6. Brown SJ, Parrish JK et al (1997) Molecular characterization and embryonic expression of the even-skipped ortholog of Tribolium castaneum. Mech Dev 61(1–2):165–173CrossRefPubMedGoogle Scholar
  7. Chipman AD, Arthur W et al (2004) A double segment periodicity underlies segment generation in centipede development. Curr Biol 14(14):1250–1255CrossRefPubMedGoogle Scholar
  8. Davis GK, Patel NH (2002) Short, long, and beyond: molecular and embryological approaches to insect segmentation. Annu Rev Entomol 47:669–699CrossRefPubMedGoogle Scholar
  9. Davis GK, Patel NH (2003) Playing by pair-rules? BioEssays 25(5):425–429CrossRefPubMedGoogle Scholar
  10. Davis GK, Jaramillo CA et al (2001) Pax group III genes and the evolution of insect pair rule patterning. Development 128(18):3445–3458PubMedGoogle Scholar
  11. Dearden P, Donly C et al (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129(23):5461–5472CrossRefPubMedGoogle Scholar
  12. Duman-Scheel M, Li X et al (1997) Genetic separation of the neural and cuticular patterning functions of gooseberry. Development 124(15):2855–2865PubMedGoogle Scholar
  13. DuPraw EJ (1967) The honeybee embryo. In: FH Wilt, NK Wessells (eds) Methods in developmental biology. Thomas Y Cromwell Company, New York, pp 183–217Google Scholar
  14. Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.6Google Scholar
  15. Fleig R (1990) Engrailed expression and body segmentation in the honeybee, Apis mellifera. Roux's Arch Dev Biol 198:467–473CrossRefGoogle Scholar
  16. Fleig R, Sander K (1986) Embryogenesis of the honeybee Apis mellifera L. (Hymenoptera: Apidae): an SEM study. Int J Inst Morphol Embryol 15(5):449–462CrossRefGoogle Scholar
  17. Gutjahr T, Frei E et al (1993a) Complex regulation of early paired expression: initial activation by gap genes and pattern modulation by pair-rule genes. Development 117:609–623PubMedGoogle Scholar
  18. Gutjahr T, Patel NH et al (1993b) Analysis of the gooseberry locus in Drosophila embryos: gooseberry determines the cuticular pattern and activates gooseberry neuro. Development 118(1):21–31PubMedGoogle Scholar
  19. Hennig W (1981) Insect phylogeny. Wiley, BathGoogle Scholar
  20. Kjer KM (2004) Aligned 18S and insect phylogeny. Syst Biol 53(3):506–514CrossRefPubMedGoogle Scholar
  21. Krauss V, Pecyna M et al (2004) Phylogenetic mapping of intron positions: a case study of translation initiation factor eIF2γ. Mol Biol Evol 22:74–84CrossRefPubMedGoogle Scholar
  22. Li X, Noll M (1993) Role of the gooseberry gene in Drosophila embryos: maintenance of wingless expression by a winglessgooseberry autoregulatory loop. EMBO J 12(12):4499–4509PubMedGoogle Scholar
  23. Li X, Noll M (1994) Evolution of distinct developmental functions of three Drosophila genes by acquisition of different cis-regulatory regions. Nature 367(6458):83–87CrossRefPubMedGoogle Scholar
  24. Maderspacher F, Bucher G et al (1998) Pair-rule and gap gene mutants in the flour beetle Tribolium castenatum. Dev Genes Evol 208:558–568CrossRefPubMedGoogle Scholar
  25. Makalowska I, Ryan JF et al (2001) GeneMachine: gene prediction and sequence annotation. Bioinformatics 17(9):843–844CrossRefPubMedGoogle Scholar
  26. Nelson JA (1915) The embryology of the honeybee. Princeton University Press, PrincetonGoogle Scholar
  27. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801CrossRefPubMedGoogle Scholar
  28. Osborne P, Dearden PK (2005) Non-radioactive in situ hybridisation to honeybees embryos and ovaries. Apidologie 36:113–118CrossRefGoogle Scholar
  29. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  30. Patel NH, Kornberg TB et al (1989a) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107(2):201–213PubMedGoogle Scholar
  31. Patel NH, Martín-Blanco E et al (1989b) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58:955–968CrossRefPubMedGoogle Scholar
  32. Patel NH, Condron BG et al (1994) Pair-rule expression patterns of even-skipped are found in both short and long germ beetles. Nature 367:429–434CrossRefPubMedGoogle Scholar
  33. Philippe H, Lartillo N, Brinkman H (2005) Multigene analyses of Bilatarian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253CrossRefPubMedGoogle Scholar
  34. Rebeiz M, Posakony JW (2004) GenePalette: a universal software tool for genome sequence visualization and analysis. Dev Biol 271(2):431–438CrossRefPubMedGoogle Scholar
  35. Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238CrossRefGoogle Scholar
  36. Schoppmeier M, Damen WGM (2005) Expression of Pax group III genes suggests a single-segmental periodicity for opisthosomal segment patterning in the spider Cupiennius salei. Evolut Develop 7(2):160–169CrossRefGoogle Scholar
  37. Schröder R, Jay DG et al (1999) Elimination of EVE protein by CALI in the short germ band insect Tribolium suggests a conserved pair-rule function for even skipped. Mech Dev 80(2):191–195CrossRefPubMedGoogle Scholar
  38. Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13(7):964–969Google Scholar
  39. Swofford DL (1998) PAUP* Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MAGoogle Scholar
  40. Thompson JD, Higgins DG et al (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  41. Walldorf U, Fleig R et al (1989) Comparison of homeobox-containing genes of the honeybee and Drosophila. Proc Natl Acad Sci U S A 86(24):9971–9975PubMedCrossRefGoogle Scholar
  42. Walldorf U, Binner P et al (2000) Hox genes in the honey bee Apis mellifera. Dev Genes Evol 210(10):483–492CrossRefPubMedGoogle Scholar
  43. Whiting MF (1998) Phylogenetic position of the Strepsiptera: review of molecular and morphological evidence. Int J Insect Morphol Embryol 27(1):53–60CrossRefGoogle Scholar
  44. Whiting MF (2002) Phylogeny of the holometabolous insect orders: molecular evidence. Zool Scr 31(1):3–15CrossRefGoogle Scholar
  45. Whiting MF, Carpenter JC et al (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46(1):1–68PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratory for Development and Evolution, Biochemistry DepartmentUniversity of OtagoDunedinNew Zealand
  2. 2.Biochemistry DepartmentUniversity of OtagoDunedinNew Zealand

Personalised recommendations