Advertisement

Development Genes and Evolution

, Volume 213, Issue 8, pp 412–415 | Cite as

Identification of the Drosophila melanogaster homolog of the human spastin gene

  • Lars KammermeierEmail author
  • Jürg Spring
  • Michael Stierwald
  • Jean-Marc Burgunder
  • Heinrich Reichert
Expression Note

Abstract

The human SPG4 locus encodes the spastin gene, which is responsible for the most prevalent form of autosomal dominant hereditary spastic paraplegia (AD-HSP), a neurodegenerative disorder. Here we identify the predicted gene product CG5977 as the Drosophila homolog of the human spastin gene, with much higher sequence similarities than any other related AAA domain protein in the fly. Furthermore we report a new potential transmembrane domain in the N-terminus of the two homologous proteins. During embryogenesis, the expression pattern of Drosophila spastin becomes restricted primarily to the central nervous system, in contrast to the ubiquitous expression of the vertebrate spastin genes. Given this nervous system-specific expression, it will be important to determine if Drosophila spastin loss-of-function mutations also lead to neurodegeneration.

Keywords

Drosophila melanogaster Spastin AAA domain Embryonic CNS 

Notes

Acknowledgements

We thank Boris Egger, Simon Sprecher, and Urs Stiefel for technical assistance, and Bruno Bello, Frank Hirth and Ronny Leemans for comments on the manuscript. This work was supported by the Swiss NSF.

References

  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amantides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al. (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195CrossRefPubMedGoogle Scholar
  2. Campos-Ortega J, Hartenstein V (1997) The embryonic development of Drosophila melanogaster, 2nd edn. Springer, Heidelberg Berlin New YorkGoogle Scholar
  3. Casari G, Rugarli E (2001) Molecular basis of inherited spastic paraplegias. Curr Opin Genet Dev 11:336–342CrossRefPubMedGoogle Scholar
  4. Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P, De Michele G, Filla A, Cocozza S, Marconi R, et al. (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983PubMedGoogle Scholar
  5. Charvin D, Cifuentes-Diaz C, Fonknechten N, Joshi V, Hazan J, Melki J, Betuing S (2003) Mutations of SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized in the nucleus. Hum Mol Genet 12:71–78CrossRefPubMedGoogle Scholar
  6. Ciccarelli FD, Proukakis C, Patel H, Cross H, Azam S, Patton MA, Bork P, Crosby H (2003) the identification of a conserved domain in both spartin and spastin, mutated in hereditary spastic paraplegia. Genomics 81:437–441CrossRefPubMedGoogle Scholar
  7. Cox GA, Mahaffey CL, Nystuen A, Letts VA, Frankel WN (2000) The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development. Nat Genet 26:198–202CrossRefPubMedGoogle Scholar
  8. Errico A, Ballabio A, Rugarli EI (2002) Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet 11:153–163CrossRefPubMedGoogle Scholar
  9. Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D, Artiguenave F, Davoine CS, Cruaud C, Durr A, Wincker P, et al. (1999) Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet 23:296–303CrossRefPubMedGoogle Scholar
  10. Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:242–244Google Scholar
  11. Patel H, Cross H, Proukakis C, Hershberger R, Bork P, Ciccarelli FD, Patton MA, McKusick VA, Crosby AH (2002) SPG20 is mutated in Troyer syndrome, a hereditary spastic paraplegia. Nat Genet 31:347–348PubMedGoogle Scholar
  12. Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Lars Kammermeier
    • 1
    Email author
  • Jürg Spring
    • 1
  • Michael Stierwald
    • 1
  • Jean-Marc Burgunder
    • 2
  • Heinrich Reichert
    • 1
  1. 1.Institute of Zoology, Biozentrum/PharmazentrumUniversity of BaselBaselSwitzerland
  2. 2.National University of Singapore and National Neuroscience InstituteSingaporeSingapore

Personalised recommendations