Development Genes and Evolution

, Volume 213, Issue 5–6, pp 222–234 | Cite as

A genomewide survey of developmentally relevant genes in Ciona intestinalis

II. Genes for homeobox transcription factors
  • Shuichi Wada
  • Miki Tokuoka
  • Eiichi Shoguchi
  • Kenji Kobayashi
  • Anna Di Gregorio
  • Antonietta Spagnuolo
  • Margherita Branno
  • Yuji Kohara
  • Daniel Rokhsar
  • Michael Levine
  • Hidetoshi Saiga
  • Nori Satoh
  • Yutaka Satou
Original Article

Abstract

Homeobox-containing genes play crucial roles in various developmental processes, including body-plan specification, pattern formation and cell-type specification. The present study searched the draft genome sequence and cDNA/EST database of the basal chordate Ciona intestinalis to identify 83 homeobox-containing genes in this animal. This number of homeobox genes in the Ciona genome is smaller than that in the Caenorhabditis elegans, Drosophila melanogaster, human and mouse genomes. Of the 83 genes, 76 have possible human orthologues and 7 may be unique to Ciona. The ascidian homeobox genes were classified into 11 classes, including Hox class, NK class, Paired class, POU class, LIM class, TALE class, SIX class, Prox class, Cut class, ZFH class and HNF1 class, according to the classification scheme devised for known homeobox genes. As to the Hox cluster, the Ciona genome contains single copies of each of the paralogous groups, suggesting that there is a single Hox cluster, if any, but genes orthologous to Hox7, 8, 9 and 11 were not found in the genome. In addition, loss of genes had occurred independently in the Ciona lineage and was noticed in Gbx of the EHGbox subclass, Sax, NK3, Vax and vent of the NK class, Cart, Og9, Anf and Mix of the Paired class, POU-I, III, V and VI of the POU class, Lhx6/7 of the LIM class, TGIF of the TALE class, Cux and SATB of the Cut class, and ZFH1 of the ZFH class, which might have reduced the number of Ciona homeobox genes. Interestingly, one of the newly identified Ciona intestinalis genes and its vertebrate counterparts constitute a novel subclass of HNF1 class homeobox genes. Furthermore, evidence for the gene structures and expression of 54 of the 83 homeobox genes was provided by analysis of ESTs, suggesting that cDNAs for these 54 genes are available. The present data thus reveal the repertoire of homeodomain-containing transcription factors in the Ciona genome, which will be useful for future research on the development and evolution of chordates.

Keywords

Basal chordates Ciona intestinalis Genomewide survey Homeobox genes 

Supplementary material

427_2013_321_MOESM1_ESM.zip (274 kb)
Supplementary material, approximately 281 KB.

References

  1. Aniello F, Locascio A, Villani MG, Di Gregorio A, Fucci L, Branno M (1999) Identification and developmental expression of Ci-msxb: a novel homologue of Drosophila msh gene in Ciona intestinalis. Mech Dev 88:123–126PubMedCrossRefGoogle Scholar
  2. Banerjee-Basu S, Baxevanis AD (2001) Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res 29:3258–3269PubMedCrossRefGoogle Scholar
  3. Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719-729PubMedGoogle Scholar
  4. Boucher CA, Winchester CL, Hamilton GM, Winter AD, Johnson KJ, Bailey ME (2000) Structure, mapping and expression of the human gene encoding the homeodomain protein, SIX2. Gene 247:145–151PubMedCrossRefGoogle Scholar
  5. Brooke NM, Garcia-Fernàndez J, Holland PWH (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392:920–922PubMedCrossRefGoogle Scholar
  6. Burglin TR (1994) A comprehensive classification of homeobox genes. In: Duboule D (ed) Guidebook to the homeobox genes. Oxford University Press, New York, pp 27–64Google Scholar
  7. Burglin TR (1995) The evolution of homeobox genes. In: Arai R, Kato M, Doi Y (eds) Biodiversity and Evolution. The National Science Museum Foundation, Tokyo, pp 291–336Google Scholar
  8. Burglin TR (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res 25:4173–4180PubMedCrossRefGoogle Scholar
  9. Burglin TR, Cassata G (2002) Loss and gain of domains during evolution of cut superclass homeobox genes. Int J Dev Biol 46:115–123PubMedGoogle Scholar
  10. Burglin TR, Ruvkun G (2001) Regulation of ectodermal and excretory function by the C. elegans POU homeobox gene ceh-6. Development 128:779–790PubMedGoogle Scholar
  11. Caracciolo A, Di Gregorio A, Aniello F, Di Lauro R, Branno M (2000) Identification and developmental expression of three Distal-less homeobox containing genes in the ascidian Ciona intestinalis. Mech Dev 99:173–176PubMedCrossRefGoogle Scholar
  12. Chi N, Epstein JA (2002) Getting your Pax straight: Pax proteins in development and disease. Trends Genet 18:41–47PubMedCrossRefGoogle Scholar
  13. Chi YI, Frantz JD, Oh BC, Hansen L, Dhe-Paganon S, Shoelson SE (2002) Diabetes mutations delineate an atypical POU domain in HNF1α. Mol Cell 10:1129–1137PubMedCrossRefGoogle Scholar
  14. Christiaen L, Burighel P, Smith WC, Vernier P, Bourrat F, Joly JS (2002) Pitx genes in Tunicates provide new molecular insight into the evolutionary origin of pituitary. Gene 287:107–113PubMedCrossRefGoogle Scholar
  15. Corrado M, Aniello F, Fucci L, Branno M (2001) Ci-IPF1, the pancreatic homeodomain transcription factor, is expressed in neural cells of Ciona intestinalis larva. Mech Dev 102:271–274PubMedCrossRefGoogle Scholar
  16. Coulier F, Popovici C, Villet R, Birnbaum D (2000) MetaHox gene clusters. J Exp Zool 288:345–351PubMedCrossRefGoogle Scholar
  17. Dehal P, Satou Y, Campbell RK, et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167PubMedCrossRefGoogle Scholar
  18. Di Gregorio A, Spagnuolo A, Ristoratore F, Pischetola M, Aniello F, Branno M, Cariello L, Di Lauro R (1995) Cloning of ascidian homeobox genes provides evidence for a primordial chordate cluster. Gene 156:253–257CrossRefGoogle Scholar
  19. Dozier C, Kagoshima H, Niklaus G, Cassata G, Burglin TR (2001) The Caenorhabditis elegans Six/sine oculis class homeobox gene ceh-32 is required for head morphogenesis. Dev Biol 236:289–303PubMedCrossRefGoogle Scholar
  20. FANTOM Consortium and RIKEN Genome Exploration Research Group Phase I & II Team (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573CrossRefGoogle Scholar
  21. Ferrier DEK, Holland PWH (2002) Ciona intestinalis ParaHox genes: evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity. Mol Phylogenet Evol 24:412PubMedCrossRefGoogle Scholar
  22. Ferrier DEK, Minguillon C, Holland PWH, Garcia-Fernàndez J (2000) The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14. Evol Dev 2:284–293PubMedCrossRefGoogle Scholar
  23. Ferrier DEK, Minguillon C, Cebrian C, Garcia-Fernàndez J (2001) Amphioxus Evx genes: implications for the evolution of the midbrain-hindbrain boundary and the chordate tailbud. Dev Biol 237:270-281PubMedCrossRefGoogle Scholar
  24. Galliot B, de Vargas C, Miller D (1999) Evolution of homeobox genes: Q50 Paired-like genes founded the Paired class. Dev Genes Evol 209:186–197PubMedCrossRefGoogle Scholar
  25. Garcia-Fernàndez J, Holland PWH (1994) Archetypal organization of the amphioxus Hox gene cluster. Nature 370:563–566PubMedCrossRefGoogle Scholar
  26. Gionti M, Ristoratore F, Di Gregorio A, Aniello F, Branno M, Di Lauro R (1998) Cihox5, a new Ciona intestinalis Hox-related gene, is involved in regionalization of the spinal cord. Dev Genes Evol 207:515–523PubMedCrossRefGoogle Scholar
  27. Giuliano P, Marino R, Pinto MR, De Santis R (1998) Identification and developmental expression of Ci-isl, a homologue of vertebrate islet genes, in the ascidian Ciona intestinalis. Mech Dev 78:199–202PubMedCrossRefGoogle Scholar
  28. Gomez-Skarmeta JL, Modolell J (2002) Iroquois genes: genomic organization and function in vertebrate neural development. Curr Opin Genet Dev 12:403–408PubMedCrossRefGoogle Scholar
  29. Hallonet M, Hollemann T, Wehr R, Jenkins NA, Copeland NG, Pieler T, Gruss P (1998) Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. Development 125:2599–2610PubMedGoogle Scholar
  30. Harris TW, Lee R, Schwarz E, Bradnam K, Lawson D, Chen W, Blasier D, Kenny E, Cunningham F, Kishore R, Chan J, et al (2003) WormBase: a cross-species database for comparative genomics. Nucleic Acids Res 31:133–137PubMedCrossRefGoogle Scholar
  31. Hobert O, Westphal H (2000) Functions of LIM-homeobox genes. Trends Genet 16:75–83PubMedCrossRefGoogle Scholar
  32. Holland PWH (1991) Cloning and evolutionary analysis of msh-like homeobox genes from mouse, zebrafish and ascidian. Gene 98:253–257PubMedCrossRefGoogle Scholar
  33. Hudson C, Lemaire P (2001) Induction of anterior neural fates in the ascidian Ciona intestinalis. Mech Dev 100:189–203PubMedCrossRefGoogle Scholar
  34. Imai KS, Satoh N, Satou Y (2002) Region specific gene expressions in the central nervous system of the ascidian embryo. Gene Exp Patt 2:319–321CrossRefGoogle Scholar
  35. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  36. Lannoy VJ, Burglin TR, Rousseau GG, Lemaigre FP (1998) Isoforms of hepatocyte nuclear factor-6 differ in DNA-binding properties, contain a bifunctional homeodomain, and define the new ONECUT class of homeodomain proteins. J Biol Chem 273:13552–13562PubMedCrossRefGoogle Scholar
  37. Locascio A, Aniello F, Amoroso A, Manzanares M, Krumlauf R, Branno M (1999) Patterning the ascidian nervous system: structure, expression and transgenic analysis of the CiHox3 gene. Development 126:4737–4748PubMedGoogle Scholar
  38. Martinez P, Rast JP, Arenas-Mena C, Davidson EH (1999) Organization of an echinoderm Hox gene cluster. Proc Natl Acad Sci USA 96:1469–1474PubMedCrossRefGoogle Scholar
  39. Ogasawara M, Wada H, Peters H, Satoh N (1999) Developmental expression of Pax1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Development 126:2539–2550PubMedGoogle Scholar
  40. Pollard SL, Holland PWH (2000) Evidence for 14 homeobox gene clusters in human genome ancestry. Curr Biol 10:1059–1062PubMedCrossRefGoogle Scholar
  41. Popodi E, Kissinger JC, Andrews ME, Raff RA (1996) Sea urchin Hox genes: insights into the ancestral Hox cluster. Mol Biol Evol 13:1078–1086PubMedCrossRefGoogle Scholar
  42. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215PubMedCrossRefGoogle Scholar
  43. Satou Y, Yamada L, Mochizuki Y, Takatori N, Kawashima T, Sasaki A, Hamaguchi M, Awazu S, Yagi K, Sasakura Y, Nakayama A, Ishikawa H, Inaba K, Satoh N (2002) A cDNA resource from the basal chordate Ciona intestinalis. Genesis 33:153–154PubMedCrossRefGoogle Scholar
  44. Satou Y, Imai KS, Levine M, Kohara Y, Rokhsar D, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. I. Genes for bHLH transcription factors. Dev Genes Evol DOI 10.1007/s00427-003-0319-7Google Scholar
  45. Scott MP (1992) Vertebrate homeobox gene nomenclature. Cell 71:551–553PubMedCrossRefGoogle Scholar
  46. Seo HC, Curtiss J, Mlodzik M, Fjose A (1999) Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development. Mech Dev 83:127–139PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Shuichi Wada
    • 1
  • Miki Tokuoka
    • 1
  • Eiichi Shoguchi
    • 1
  • Kenji Kobayashi
    • 1
  • Anna Di Gregorio
    • 2
  • Antonietta Spagnuolo
    • 3
  • Margherita Branno
    • 3
  • Yuji Kohara
    • 4
  • Daniel Rokhsar
    • 5
  • Michael Levine
    • 6
  • Hidetoshi Saiga
    • 7
  • Nori Satoh
    • 1
  • Yutaka Satou
    • 1
  1. 1.Department of Zoology, Graduate School of ScienceKyoto UniversityKyoto 606-8502Japan
  2. 2.Department of Cell and Developmental BiologyWeill Medical College of Cornell UniversityNew YorkUSA
  3. 3.Laboratory of Biochemistry and Molecular BiologyStazione Zoologica Anton DohrnNaplesItaly
  4. 4.National Institute of GeneticsMishima, Shizuoka 411-8540Japan
  5. 5.U.S. DoE Joint Genome InstituteWalnut CreekUSA
  6. 6.Department of Molecular and Cellular Biology, Division of Genetics and DevelopmentUniversity of CaliforniaBerkeleyUSA
  7. 7.Department of Biological Sciences, Graduate School of ScienceTokyo Metropolitan UniversityTokyo 192-0397Japan

Personalised recommendations