Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Induced affective states do not modulate effort avoidance


Recent research reveals that when faced with alternative lines of action, humans tend to choose the less cognitively demanding one, suggesting that cognitive control is intrinsically registered as costly. This idea is further supported by studies showing that the exertion of cognitive control evokes negative affective states. Despite extensive evidence for mood-induced modulations on control abilities, the impact of affective states on the avoidance of cognitive demand is still unknown. Across two well-powered experiments, we tested the hypothesis that negative affective states would increase the avoidance of cognitively demanding tasks. Contrary to our expectations, induced affective states did not modulate the avoidance of demand, despite having an effect on task performance and subjective experience. Altogether, our results indicate that there are limits to the effect of affective signals on cognitive control and that such interaction might depend on specific affective and control settings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    A paired Wilcoxon test (a Saphiro-Wilk test of normality revealed a significant deviation from normality, p < 0.001) was performed on RTs of correct switch (M = 1593 ms, SD = 435 ms) and non-switch trials (M = 1111 ms, SD = 269 ms), revealing a significant effect of switching (W71,1 = 75, p < 0.001, effect size = 0.94). An analysis of accuracy scores also revealed a switching effect (W71,1 = 1683, p = 0.002, effect size = 0.28).

  2. 2.

    The 30 new images were selected to match the valence and arousal values of those presented during the experiment. Specifically, the scores for each dimension of the new images were: Positive [valence = 6.84, SD = 0.35; arousal = 6.42, SD = 0.89]; Negative [valence = 2.44, SD = 0.65; arousal = 6.01, SD = 0.75]; Neutral [valence = 4.73, SD = 0.46; arousal = 3.77, SD = 0.54].

  3. 3.

    A paired Wilcoxon test (a Saphiro-Wilk test of normality revealed a significant deviation from normality, p < 0.001) was performed on the reaction times (RTs) of correct switch (M = 1407 ms, SD = 348 ms) and non-switch trials (M = 1000 ms, SD = 209 ms), revealing a significant effect of switching (W71,1 = 75, p < 0.001, effect size = 1). An analysis of accuracy scores also revealed a switching effect (W71,1 = 1842, p < 0.001, effect size = 0.4).


  1. Bäuml, K.-H., & Kuhbandner, C. (2007). Remembering can cause forgetting—but not in negative moods. Psychological Science,18(2), 111–115. https://doi.org/10.1111/j.1467-9280.2007.01857.x.

  2. Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective and Behavioral Neuroscience.. https://doi.org/10.3758/CABN.7.4.356. (Springer-Verlag)

  3. Botvinick, M. M., & Cohen, J. D. (2014). The computational and neural basis of cognitive control: Charted territory and new frontiers. Cognitive Science,38(6), 1249–1285. https://doi.org/10.1111/cogs.12126.

  4. Botvinick, M. M., & Rosen, Z. B. (2009). Anticipation of cognitive demand during decision-making. Psychological Research Psychologische Forschung,73(6), 835–842. https://doi.org/10.1007/s00426-008-0197-8.

  5. Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry,25(1), 49–59. https://doi.org/10.1016/0005-7916(94)90063-9.

  6. Braem, S., De Houwer, J., Demanet, J., Yuen, K. S. L., Kalisch, R., & Brass, M. (2017a). Pattern analyses reveal separate experience-based fear memories in the human right amygdala. The Journal of Neuroscience,37(34), 8116–8130. https://doi.org/10.1523/JNEUROSCI.0908-17.2017.

  7. Braem, S., King, J. A., Korb, F. M., Krebs, R. M., Notebaert, W., & Egner, T. (2017b). The role of anterior cingulate cortex in the affective evaluation of conflict. Journal of Cognitive Neuroscience,29(1), 137–149.

  8. Cacioppo, J. T., Petty, R. E., & Feng Kao, C. (1984). The efficient assessment of need for cognition. Journal of Personality Assessment,48(3), 306–307.

  9. Demanet, J., Liefooghe, B., & Verbruggen, F. (2011). Valence, arousal, and cognitive control: A voluntary task-switching study. Frontiers in Psychology,2, 336. https://doi.org/10.3389/fpsyg.2011.00336.

  10. Desender, K., Calderon, C. B., Van Opstal, F., & Van den Bussche, E. (2017). Avoiding the conflict: Metacognitive awareness drives the selection of low-demand contexts. Journal of Experimental Psychology: Human Perception and Performance,43(7), 1397–1410. https://doi.org/10.1037/xhp0000391.

  11. Dignath, D., Janczyk, M., & Eder, A. B. (2017). Phasic valence and arousal do not influence post-conflict adjustments in the Simon task. Acta Psychologica,174, 31–39. https://doi.org/10.1016/J.ACTPSY.2017.01.004.

  12. Dreisbach, G., & Fischer, R. (2012). The role of affect and reward in the conflict-triggered adjustment of cognitive control. Frontiers in Human Neuroscience,6, 342. https://doi.org/10.3389/fnhum.2012.00342.

  13. Dreisbach, G., & Fischer, R. (2015). Conflicts as aversive signals for control adaptation. Current Directions in Psychological Science,24(4), 255–260. https://doi.org/10.1177/0963721415569569.

  14. Dreisbach, G., Reindl, A. L., & Fischer, R. (2018). Conflict and disfluency as aversive signals: Context-specific processing adjustments are modulated by affective location associations. Psychological Research Psychologische Forschung,82(2), 324–336. https://doi.org/10.1007/s00426-016-0822-x.

  15. Dreisbach, G., Fröber, K., Berger, A., & Fischer, R. (2019). Unexpected conflict signals loom larger in a positive context: Evidence from context specific control adjustments. Journal of Experimental Psychology: Learning Memory and Cognition,45(8), 1398–1409. https://doi.org/10.1037/xlm0000662.

  16. Fritz, J., & Dreisbach, G. (2013). Conflicts as aversive signals: Conflict priming increases negative judgments for neutral stimuli. Cognitive, Affective, & Behavioral Neuroscience,13(2), 311–317. https://doi.org/10.3758/s13415-012-0147-1.

  17. Gold, J. M., Kool, W., Botvinick, M. M., Hubzin, L., August, S., & Waltz, J. A. (2015). Cognitive effort avoidance and detection in people with schizophrenia. Cognitive, Affective, & Behavioral Neuroscience,15(1), 145–154. https://doi.org/10.3758/s13415-014-0308-5.

  18. Hefer, C., & Dreisbach, G. (2018). The volatile nature of positive affect effects: Opposite effects of positive affect and time on task on proactive control. Psychological Research Psychologische Forschung. https://doi.org/10.1007/s00426-018-1086-4.

  19. Hull, C. L. (1943). Principles of behavior. New York: Appleton-Century.

  20. Inzlicht, M., Bartholow, B. D., & Hirsh, J. B. (2015). Emotional foundations of cognitive control. Trends in Cognitive Sciences,19(3), 126–132. https://doi.org/10.1016/J.TICS.2015.01.004.

  21. Jeffreys, H. (1998). The theory of probability. Oxford: OUP Oxford.

  22. Johnson, V. E., Payne, R. D., Wang, T., Asher, A., & Mandal, S. (2017). On the reproducibility of psychological science. Journal of the American Statistical Association,112(517), 1–10. https://doi.org/10.1080/01621459.2016.1240079.

  23. Kleiner, M., Brainard, D. H., & Pelli, D. G. (2007). What’s new in Psychtoobox-3? Perception,36(14), 1.

  24. Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology: General,139(4), 665. https://doi.org/10.1037/a0020198.

  25. Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences,36(6), 661–679.

  26. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International affective picture system (IAPS): Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention,1, 39–58.

  27. Mirandola, C., & Toffalini, E. (2016). Arousal-but not valence-reduces false memories at retrieval. PLoS ONE,11(3), e0148716. https://doi.org/10.1371/journal.pone.0148716.

  28. Moltó, J., Montañés, S., Gil, R. P., Cabedo, P. S., Verchili, M. C. P., Irún, M. P. T., et al. (1999). Un método para el estudio experimental de las emociones: el International Affective Picture System (IAPS). Adaptación española. Revista de Psicología General y Aplicada: Revista de La Federación Española de Asociaciones de Psicología,52(1), 55–87.

  29. Nusbaum, A. T., Wilson, C. G., Stenson, A., Hinson, J. M., & Whitney, P. (2018). Induced positive mood and cognitive flexibility: Evidence from task switching and reversal learning. Collabra Psychology,4(1), 25. https://doi.org/10.1525/collabra.150.

  30. Okon-Singer, H., Hendler, T., Pessoa, L., & Shackman, A. J. (2015). The neurobiology of emotion–cognition interactions: fundamental questions and strategies for future research. Frontiers in Human Neuroscience,9, 58.

  31. Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences,13(4), 160–166. https://doi.org/10.1016/J.TICS.2009.01.006.

  32. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology,56(5), 356–374. https://doi.org/10.1016/j.jmp.2012.08.001.

  33. Sanz, J. (2001). Un instrumento para evaluar la eficacia de los procedimientos de inducción de estado de ánimo: la “Escala de Valoración del Estado de Ánimo”(EVEA). Análisis y Modificación de Conducta,27(111), 71–110.

  34. Sanz, J., Gutiérrez, S., & García-Vera, M. P. (2014). Propiedadades psicométricas de la escala de valoración del estado de ánimo (EVEA): una revisión. Ansiedad y Estrés,20(1), 27–49.

  35. Schouppe, N., Demanet, J., Boehler, C. N., Ridderinkhof, K. R., & Notebaert, W. (2014). The role of the striatum in effort-based decision-making in the absence of reward. Journal of Neuroscience,34(6), 2148–2154. https://doi.org/10.1523/JNEUROSCI.1214-13.2014.

  36. Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron,79(2), 217–240. https://doi.org/10.1016/j.neuron.2013.07.007.

  37. Tangney, J. P., Baumeister, R. F., & Boone, A. L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality,72(2), 271–324.

  38. Uhrig, M. K., Trautmann, N., Baumgärtner, U., Treede, R.-D., Henrich, F., Hiller, W., et al. (2016). Emotion elicitation: A comparison of pictures and films. Frontiers in Psychology,7, 180. https://doi.org/10.3389/fpsyg.2016.00180.

  39. van Steenbergen, H., Band, G. P. H., & Hommel, B. (2010). In the mood for adaptation. Psychological Science,21(11), 1629–1634. https://doi.org/10.1177/0956797610385951.

  40. Vermeylen, L., Braem, S., & Notebaert, W. (2019). The affective twitches of task switches: Task switch cues are evaluated as negative. Cognition,183, 124–130. https://doi.org/10.1016/j.cognition.2018.11.002.

  41. Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach. Cognitive, Affective and Behavioral Neuroscience,15(2), 395–415. https://doi.org/10.3758/s13415-015-0334-y.

  42. Xie, W., & Zhang, W. (2018). Mood-dependent retrieval in visual long-term memory: Dissociable effects on retrieval probability and mnemonic precision. Cognition and Emotion,32(4), 674–690. https://doi.org/10.1080/02699931.2017.1340261.

  43. Zhang, X., Yu, H. W., & Barrett, L. F. (2014). How does this make you feel? A comparison of four affect induction procedures. Frontiers in Psychology,5, 689. https://doi.org/10.3389/fpsyg.2014.00689.

Download references


C.G.G. and M.R. were supported by the Spanish Ministry of Science, Innovation and Universities (PSI2016-78236-P). C.G.G. was additionally supported by the Special Research Fund of Ghent University BOF.GOA.2017.0002.03. We thank Senne Braem for helpful comments on previous versions of the manuscript.

Author information

Correspondence to Carlos González-García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1233 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-García, C., García-Carrión, B., López-Benítez, R. et al. Induced affective states do not modulate effort avoidance. Psychological Research (2020). https://doi.org/10.1007/s00426-020-01300-9

Download citation