Advertisement

Reaching trajectories unravel modality-dependent temporal dynamics of the automatic process in the Simon task: a model-based approach

  • Yael Salzer
  • Jason FriedmanEmail author
Original Article

Abstract

The Simon effect represents a phenomenon in which the location of the stimuli affects the speed and accuracy of the response, despite being irrelevant for the task demands. This is believed to be due to an automatic activation of a response corresponding to the location of the stimuli, which conflicts with the controlled decision process based on relevant stimuli features. Previously, differences in the nature of the Simon effect (i.e., the pattern of change of the effect across the distribution of response times) between visual and somatosensory stimuli were reported. We hypothesize that the temporal dynamics of visual and somatosensory automatic and controlled processes vary, thus driving the reported behavioral differences. While most studies have used response times to study the underlying mechanisms involved, in this study we had participants reach out to touch the targets and recorded their arm movements using a motion capture system. Importantly, the participants started their movements before a final decision was made. In this way, we could analyze the movements to gain insights into the competition between the automatic and controlled processes. We used this technique to describe the results in terms of a model assuming automatic activation due to location-based evidence, followed by inhibition. We found that for the somatosensory Simon effect, the decay of the automatic process is significantly slower than for the visual Simon effect, suggesting quantitative differences in this automatic process between the visual and somatosensory modalities.

Notes

Acknowledgements

We thank Maayan Ben Nun for performing the data collection.

Data availability

The datasets used during the current study are available from the corresponding author on reasonable request.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aisenberg, D., & Henik, A. (2012). Stop being neutral: Simon takes control! Quarterly Journal of Experimental Psychology, 65(2), 295–304.  https://doi.org/10.1080/17470218.2010.507819.Google Scholar
  2. Blair, R. C., & Karniski, W. (1993). An alternative method for significance testing of waveform difference potentials. Psychophysiology, 30(5), 518–524.  https://doi.org/10.1111/j.1469-8986.1993.tb02075.x.Google Scholar
  3. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.  https://doi.org/10.1163/156856897X00357.Google Scholar
  4. Buetti, S., & Kerzel, D. (2009). Conflicts during response selection affect response programming: Reactions toward the source of stimulation. Journal of Experimental Psychology Human Perception and Performance, 35(3), 816–834.  https://doi.org/10.1037/a0011092.Google Scholar
  5. Crevecoeur, F., Barrea, A., Libouton, X., Thonnard, J.-L., & Lefèvre, P. (2017). Multisensory components of rapid motor responses to fingertip loading. Journal of Neurophysiology, 118(1), 331–343.  https://doi.org/10.1152/jn.00091.2017.Google Scholar
  6. De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology Human Perception and Performance, 20(4), 731–750.  https://doi.org/10.1037/0096-1523.20.4.731.Google Scholar
  7. Ellinghaus, R., Karlbauer, M., Bausenhart, K. M., & Ulrich, R. (2018). On the time-course of automatic response activation in the Simon task. Psychological Research, 82(4), 734–743.  https://doi.org/10.1007/s00426-017-0860-z.Google Scholar
  8. Finkbeiner, M., Coltheart, M., & Coltheart, V. (2014). Pointing the way to new constraints on the dynamical claims of computational models. Journal of Experimental Psychology Human Perception and Performance, 40(1), 172–185.  https://doi.org/10.1037/a0033169.Google Scholar
  9. Finkbeiner, M., & Friedman, J. (2011). The flexibility of nonconsciously deployed cognitive processes: Evidence from masked congruence priming. PLoS One, 6(2), e17095.  https://doi.org/10.1371/journal.pone.0017095.Google Scholar
  10. Finkbeiner, M., & Heathcote, A. (2016). Distinguishing the time- and magnitude-difference accounts of the Simon effect: Evidence from the reach-to-touch paradigm. Attention Perception and Psychophysics, 78, 848–867.  https://doi.org/10.3758/s13414-015-1044-9.Google Scholar
  11. Flash, T., & Henis, E. A. (1991). Arm trajectory modification during reaching towards visual targets. Journal of Cognitive Neuroscience, 3(3), 220–230.  https://doi.org/10.1162/jocn.1991.3.3.220.Google Scholar
  12. Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience, 5(7), 1688–1703.Google Scholar
  13. Friedman, J. (2014). Repeated measures (computer software).  https://doi.org/10.5281/zenodo.10438.
  14. Friedman, J., Brown, S., & Finkbeiner, M. (2013). Linking cognitive and reaching trajectories via intermittent movement control. Journal of Mathematical Psychology, 57(3–4), 140–151.  https://doi.org/10.1016/j.jmp.2013.06.005.Google Scholar
  15. Friedman, J., & Finkbeiner, M. (2010). Temporal dynamics of masked congruence priming: Evidence from reaching trajectories. In W. Christensen, E. Schier, & J. Sutton (Eds.), Proceedings of the 9th conference of the Australasian Society for Cognitive Science (pp. 98–105). Sydney: Macquarie University.  https://doi.org/10.5096/ascs200916.Google Scholar
  16. Hommel, B. (1994). Spontaneous decay of response-code activation. Psychological Research, 56(4), 261–268.  https://doi.org/10.1007/BF00419656.Google Scholar
  17. Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research, 73(4), 512–526.  https://doi.org/10.1007/s00426-009-0234-2.Google Scholar
  18. Horowitz, J., Majeed, Y. A., & Patton, J. (2016). A fresh perspective on dissecting action into discrete submotions. In 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5684–5688). Presented at the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).  https://doi.org/10.1109/embc.2016.7592017.
  19. Karayanidis, F., Provost, A., Brown, S., Paton, B., & Heathcote, A. (2011). Switch-specific and general preparation map onto different ERP components in a task-switching paradigm. Psychophysiology, 48(4), 559–568.  https://doi.org/10.1111/j.1469-8986.2010.01115.x.Google Scholar
  20. Marcos, E., Cos, I., Girard, B., & Verschure, P. F. M. J. (2015). motor cost influences perceptual decisions. PLoS One, 10(12), e0144841.  https://doi.org/10.1371/journal.pone.0144841.Google Scholar
  21. Moher, J., & Song, J.-H. (2014). Perceptual decision processes flexibly adapt to avoid change-of-mind motor costs. Journal of Vision, 14(8), 1–13.  https://doi.org/10.1167/14.8.1.Google Scholar
  22. Proctor, R. W., Miles, J. D., & Baroni, G. (2011). Reaction time distribution analysis of spatial correspondence effects. Psychonomic Bulletin and Review, 18(2), 242–266.  https://doi.org/10.3758/s13423-011-0053-5.Google Scholar
  23. Pruszynski, J. A., Johansson, R. S., & Flanagan, J. R. (2016). A rapid tactile-motor reflex automatically guides reaching toward handheld objects. Current Biology, 26(6), 788–792.  https://doi.org/10.1016/j.cub.2016.01.027.Google Scholar
  24. Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86(3), 446–461.Google Scholar
  25. Ratcliff, R. (2006). Modeling response signal and response time data. Cognitive Psychology, 53(3), 195–237.  https://doi.org/10.1016/j.cogpsych.2005.10.002.Google Scholar
  26. Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922.  https://doi.org/10.1162/neco.2008.12-06-420.Google Scholar
  27. Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks: empirical clarification through distributional analyses. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action (pp. 494–519). Oxford: Oxford University Press.Google Scholar
  28. Rohrer, B., & Hogan, N. (2006). Avoiding spurious submovement decompositions II: A scattershot algorithm. Biological Cybernetics, 94(5), 409–414.  https://doi.org/10.1007/s00422-006-0055-y.Google Scholar
  29. Salzer, Y. (2013). Cognitive control in the tactile Simon task: The unique role of tactile spatial information (PhD). Beer-Sheva: Ben-Gurion University of the Negev.Google Scholar
  30. Salzer, Y., Aisenberg, D., Oron-Gilad, T., & Henik, A. (2014). In touch with the Simon effect. Experimental Psychology, 61(3), 165–179.  https://doi.org/10.1027/1618-3169/a000236.Google Scholar
  31. Salzer, Y., de Hollander, G., & Forstmann, B. U. (2017). Sensory neural pathways revisited to unravel the temporal dynamics of the Simon effect: A model-based cognitive neuroscience approach. Neuroscience & Biobehavioral Reviews.  https://doi.org/10.1016/j.neubiorev.2017.02.023.Google Scholar
  32. Schwarz, W., & Miller, J. (2012). Response time models of delta plots with negative-going slopes. Psychonomic Bulletin and Review, 19(4), 555–574.  https://doi.org/10.3758/s13423-012-0254-6.Google Scholar
  33. Scorolli, C., Pellicano, A., Nicoletti, R., Rubichi, S., & Castiello, U. (2014). The Simon effect in action: Planning and/or on-line control effects? Cognitive Science, 39(5), 972–991.  https://doi.org/10.1111/cogs.12188.Google Scholar
  34. Servant, M., White, C., Montagnini, A., & Burle, B. (2016). Linking theoretical decision-making mechanisms in the simon task with electrophysiological data: A model-based neuroscience study in humans. Journal of Cognitive Neuroscience, 28(10), 1501–1521.  https://doi.org/10.1162/jocn_a_00989.Google Scholar
  35. Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Advances in psychology (Vol. 65, pp. 31–86). North-Holland.  https://doi.org/10.1016/s0166-4115(08)61218-2.
  36. Simon, J. R., & Wolf, J. D. (1963). Choice reaction time as a function of angular stimulus–response correspondence and age. Ergonomics, 6(1), 99–105.  https://doi.org/10.1080/00140136308930679.Google Scholar
  37. Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous attraction toward phonological competitors. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10393–10398.  https://doi.org/10.1073/pnas.0503903102.Google Scholar
  38. Töbel, L., Hübner, R., & Stürmer, B. (2014). Suppression of irrelevant activation in the horizontal and vertical Simon task differs quantitatively not qualitatively. Acta Psychologica, 152, 47–55.  https://doi.org/10.1016/j.actpsy.2014.07.007.Google Scholar
  39. Trommershäuser, J., Maloney, L. T., & Landy, M. S. (2008). Decision making, movement planning and statistical decision theory. Trends in Cognitive Sciences, 12(8), 291–297.  https://doi.org/10.1016/j.tics.2008.04.010.Google Scholar
  40. Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive Psychology, 78, 148–174.  https://doi.org/10.1016/j.cogpsych.2015.02.005.Google Scholar
  41. Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108(3), 550–592.  https://doi.org/10.1037/0033-295X.108.3.550.Google Scholar
  42. van den Wildenberg, W. P. M., Wylie, S. A., Forstmann, B. U., Burle, B., Hasbroucq, T., & Ridderinkhof, K. R. (2010). To head or to heed? Beyond the surface of selective action inhibition: A review. Frontiers in Human Neuroscience, 4, 222.  https://doi.org/10.3389/fnhum.2010.00222.Google Scholar
  43. van Maanen, L., Turner, B., & Forstmann, B. U. (2015). From model-based perceptual decision-making to spatial interference control. Current Opinion in Behavioral Sciences, 1, 72–77.  https://doi.org/10.1016/j.cobeha.2014.10.010.Google Scholar
  44. Wascher, E., Schatz, U., Kuder, T., & Verleger, R. (2001). Validity and boundary conditions of automatic response activation in the Simon task. Journal of Experimental Psychology Human Perception and Performance, 27(3), 731–751.  https://doi.org/10.1037/0096-1523.27.3.731.Google Scholar
  45. Welsh, T. N., Pacione, S. M., Neyedli, H. F., Ray, M., & Ou, J. (2015). Trajectory deviations in spatial compatibility tasks with peripheral and central stimuli. Psychological Research, 79(4), 650–657.  https://doi.org/10.1007/s00426-014-0597-x.Google Scholar
  46. White, C. N., Servant, M., & Logan, G. D. (2018). Testing the validity of conflict drift-diffusion models for use in estimating cognitive processes: A parameter-recovery study. Psychonomic Bulletin and Review, 25(1), 286–301.  https://doi.org/10.3758/s13423-017-1271-2.Google Scholar
  47. Wiegand, K., & Wascher, E. (2005). Dynamic aspects of stimulus–response correspondence: Evidence for two mechanisms involved in the Simon effect. Journal of Experimental Psychology Human Perception and Performance, 31(3), 453–464.  https://doi.org/10.1037/0096-1523.31.3.453.Google Scholar
  48. Wiegand, K., & Wascher, E. (2007). The Simon effect for vertical S–R relations: Changing the mechanism by randomly varying the S–R mapping rule? Psychological Research, 71(2), 219–233.  https://doi.org/10.1007/s00426-005-0023-5.Google Scholar
  49. Wispinski, N. J., Gallivan, J. P., & Chapman, C. S. (2019). Models, movements, and minds: Bridging the gap between decision making and action. Annals of the New York Academy of Sciences.  https://doi.org/10.1111/nyas.13973.Google Scholar
  50. Woestenburg, J. C., Verbaten, M. N., van Hees, H. H., & Slangen, J. L. (1983). Single trial ERP estimation in the frequency domain using orthogonal polynomial trend analysis (OPTA): Estimation of individual habituation. Biological Psychology, 17(2–3), 173–191.  https://doi.org/10.1016/0301-0511(83)90018-2.Google Scholar
  51. Xiong, A., & Proctor, R. W. (2016). Decreasing auditory Simon effects across reaction time distributions. Journal of Experimental Psychology Human Perception and Performance, 42(1), 23–38.  https://doi.org/10.1037/xhp0000117.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychologyBen-Gurion University of the NegevBeershebaIsrael
  2. 2.Institute of Agricultural Engineering Agricultural Research Organization (A.R.O) - Volcani CenterRishon-Le’ZionIsrael
  3. 3.Department of Physical Therapy, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  4. 4.Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations