Advertisement

Shared mechanisms underlying the location-, word- and arrow-based Simon effects

  • Chunming LuoEmail author
  • Robert W. Proctor
Original Article
  • 30 Downloads

Abstract

A left or right keypress response to a relevant stimulus attribute (e.g., color) is faster when irrelevant left or right stimulus-location information corresponds with the correct response than when it does not. This phenomenon, known as the Simon effect, is obtained not only for physical locations, but also location words “left” and “right” and left- or right-pointing arrows. However, these location-, word-, and arrow-based Simon effects show different patterns in the reaction-time (RT) distributions, as evident in delta plots. In the present study, we employed procedures, analysis of survival curves and divergence point analysis, which have not previously been applied to the Simon effect, to investigate differences in time course of these various Simon effects in more detail. Also, we examined whether the diffusion model for conflict tasks (DMC), which assumes that automatic activation of task-irrelevant information occurs in a pulse-like function, can capture not only features of the RT distributions for the location-based Simon effect, to which it has been fit previously, but also features of the word- and arrow-based Simon effects, to which it has not. Results showed different survival curves and earliest, maximum, and latest divergence points for the three Simon effects, but DMC was able to capture the basic features of the RT distributions reflected by delta plot and survival curves for all effects. The results imply that the location-, word-, and arrow-based Simon effects have shared mechanisms, although they have different RT distributions.

Notes

Acknowledgements

We thank Dr. Rolf Ulrich and Ruben Ellinghaus for providing us the script of DMC in Experiment 1 in Ellinghaus et al. (2018) and making some comments on the manuscript.

Funding

This research was supported by grants from National Science Foundation of China (31470984).

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interests exist.

Informed consent

Written consent was obtained from all participants prior to participation.

Ethical standards

The protocol was approved by the institutional review board (IRB) at the Institute of Psychology, Chinese Academy of Sciences.

References

  1. Ando, E., Matsuki, K., Sheridan, H., & Jared, D. (2015). The locus of Katakana-English masked phonological priming effects. Bilingualism: Language and Cognition, 18, 101–117.CrossRefGoogle Scholar
  2. Ansorge, U., & Wühr, P. (2004). A response-discrimination account of the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 30, 365–377.Google Scholar
  3. Baroni, G., Pellicano, A., Lugli, L., Nicoletti, R., & Proctor, R. W. (2012). Influence of temporal overlap on time course of the Simon effect. Experimental Psychology, 59, 88–98.CrossRefGoogle Scholar
  4. Burle, B., van den Wildenberg, W. P. M., & Ridderinkhof, K. R. (2005). Dynamics of facilitation and interference in cue-priming and Simon tasks. European Journal of Cognitive Psychology, 17, 619–641.CrossRefGoogle Scholar
  5. De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20, 731–750.Google Scholar
  6. Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. Boca Raton, FL: Chapman & Hall.Google Scholar
  7. Ellinghaus, R., Karlbauer, M., Bausenhart, K. M., & Ulrich, R. (2018). On the time-course of automatic response activation in the Simon task. Psychological Research, 82, 734–743.CrossRefGoogle Scholar
  8. Geisser, S., & Greenhouse, S. W. (1958). An extension of box’s results on the use of the F distribution in multivariate analysis. The Annals of Mathematical Statistics, 29, 885–891.CrossRefGoogle Scholar
  9. Hoedemaker, R. S., & Gordon, P. C. (2017). The onset and time course of semantic priming during rapid recognition of visual words. Journal of Experimental Psychology: Human Perception and Performance, 43, 881–902.Google Scholar
  10. Hommel, B. (1993). The relationship between stimulus processing and response selection in the Simon task: Evidence for a temporal overlap. Psychological Research, 55, 280–290.CrossRefGoogle Scholar
  11. Hommel, B. (1994). Spontaneous decay of response-code activation. Psychological Research, 56, 261–268.CrossRefGoogle Scholar
  12. Khalid, S., & Ansorge, U. (2013). The simon effect of spatial words in eye movements: Comparison of vertical and horizontal effects and of eye and finger responses. Vision Research, 86, 6–14.CrossRefGoogle Scholar
  13. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility–a model and taxonomy. Psychological Review, 97, 253–270.CrossRefGoogle Scholar
  14. Logan, G. (1980). Attention and automaticity in Stroop and priming tasks: Theory and data. Cognitive Psychology, 12, 523–553.CrossRefGoogle Scholar
  15. Lu, C.-H., & Proctor, R. W. (1995). The influence of irrelevant location information on performance: A review of the Simon and spatial Stroop effects. Psychonomic Bulletin and Review, 2, 174–207.CrossRefGoogle Scholar
  16. Lu, C.-H., & Proctor, R. W. (2001). Influence of irrelevant information on human performance: Effects of S–R association strength and relative timing. Quarterly Journal of Experimental Psychology, 54, 95–136.CrossRefGoogle Scholar
  17. Luo, C., & Proctor, R. W. (2017). How different location modes influence responses in a Simon-like task. Psychological Research, 81, 1125–1134.CrossRefGoogle Scholar
  18. Luo, C., & Proctor, R. W. (2018a). How different direct association routes influence the indirect route in the same Simon-like task. Psychological Research.  https://doi.org/10.1007/s00426-018-1024-5.Google Scholar
  19. Luo, C., & Proctor, R. W. (2018b). The location-, word-, and arrow-based Simon effects: An ex-Gaussian analysis. Memory and Cognition, 46, 497–506.CrossRefGoogle Scholar
  20. Miles, J. D., & Proctor, R. W. (2012). Correlations between spatial compatibility effects: Are arrows more like locations or words? Psychological Research, 76, 777–791.CrossRefGoogle Scholar
  21. Modern Chinese Frequency Dictionary. (1985). Beijing, People’s Republic of China: Beijing Language Institute Press.Google Scholar
  22. Nelder, B. J. A., & Mead, R. (1964). A simplex method for function minimization. The Computer Journal, 7, 308–313.CrossRefGoogle Scholar
  23. Pellicano, A., Lugli, L., Baroni, G., & Nicoletti, R. (2009). The Simon effect with conventional signals: A time-course analysis. Experimental Psychology, 56, 219–227.CrossRefGoogle Scholar
  24. Pratte, M. S., Rouder, J. N., Morey, R. D., & Feng, C. (2010). Exploring the differences in distributional properties between Stroop and Simon effects using delta plots. Attention, Perception, and Psychophysics, 72, 2013–2025.CrossRefGoogle Scholar
  25. Proctor, R. W., Marble, J. G., & Vu, K.-P. L. (2000). Mixing incompatibly mapped location-relevant trials with location-irrelevant trials: Effects of stimulus mode on the reverse Simon effect. Psychological Research, 64, 11–24.CrossRefGoogle Scholar
  26. Proctor, R. W., Miles, J. D., & Baroni, G. (2011). Reaction time distribution analysis of spatial correspondence effects. Psychonomic Bulletin and Review, 18, 242–266.CrossRefGoogle Scholar
  27. Proctor, R. W., Yamaguchi, M., Zhang, Y., & Vu, K.-P. L. (2009). Influence of visual stimulus mode on transfer of acquired spatial associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 434–445.Google Scholar
  28. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.CrossRefGoogle Scholar
  29. Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111, 333–367.CrossRefGoogle Scholar
  30. Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20, 260–281.CrossRefGoogle Scholar
  31. Reingold, E. M., Reichle, E. D., Glaholt, M. G., & Sheridan, H. (2012). Direct lexical control of eye movements in reading: Evidence from a survival analysis of fixation durations. Cognitive Psychology, 65, 177–206.CrossRefGoogle Scholar
  32. Reingold, E. M., & Sheridan, H. (2018). On using distributional analysis techniques for determining the onset of the influence of experimental variables. The Quarterly Journal of Experimental Psychology, 71, 260–271.CrossRefGoogle Scholar
  33. Reingold, E. M., & Sheridan, H. (2014). Estimating the divergence point: A novel distributional analysis procedure for determining the onset of the influence of experimental variables. Frontiers in Psychology, 5, 1–10.CrossRefGoogle Scholar
  34. Reingold, E. M., & Sheridan, H. (2018). On using distributional analysis techniques for determining the onset of the influence of experimental variables. Quarterly Journal of Experimental Psychology, 71, 260–271.CrossRefGoogle Scholar
  35. Scerrati, E., Lugli, L., Nicoletti, R., & Umiltà, C. (2017). Comparing Stroop-like and Simon effects on perceptual features. Scientific Reports, 7, 17815.CrossRefGoogle Scholar
  36. Schwarz, W., & Miller, J. (2012). Response time models of delta plots with negative-going slopes. Psychonomic Bulletin and Review, 19, 555–574.CrossRefGoogle Scholar
  37. Servant, M., White, C., Montagnini, A., & Burle, B. (2016). Linking theoretical decision-making mechanisms in the Simon task with electrophysiological data: A model-based neuroscience study in humans. Journal of Cognitive Neuroscience, 28, 1501–1521.CrossRefGoogle Scholar
  38. Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Stimulus–response compatibility: An integrated perspective (pp. 31–86). Amsterdam: North-Holland.Google Scholar
  39. Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive Psychology, 78, 148–174.CrossRefGoogle Scholar
  40. Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2016). Corrigendum to automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions [Cogn. Psychol. 78 (2015) 148–174]. Cognitive Psychology, 91, 150.CrossRefGoogle Scholar
  41. Umiltà, C., & Nicoletti, R. (1990). Spatial stimulus–response compatibility. In R. W. Proctor & T. G. Reeve (Eds.), Stimulus–response compatibility: An integrated perspective (pp. 89–143). Amsterdam: North-Holland.Google Scholar
  42. Wascher, E., Schatz, U., Kuder, T., & Verleger, R. (2001). Validity and boundary conditions of automatic response activation in the Simon task. Journal of Experimental Psychology: Human Perception and Performance, 27, 731–751.Google Scholar
  43. Wiegand, K., & Wascher, E. (2005). Dynamic aspects of stimulus–response correspondence: Evidence for two mechanisms involved in the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 31, 453–464.Google Scholar
  44. Wiegand, K., & Wascher, E. (2007). The Simon effect for vertical S–R relations: Changing the mechanism by randomly varying the S–R mapping rule? Psychological Research, 71, 219–233.CrossRefGoogle Scholar
  45. Yamaguchi, M., & Proctor, R. W. (2012). Multidimensional vector model of stimulus–response compatibility. Psychological Review, 119, 272–303.CrossRefGoogle Scholar
  46. Zorzi, M., & Umiltà, C. (1995). A computational model of the Simon effect. Psychological Research, 58, 193–205.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
  2. 2.Department of Psychological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations