Advertisement

I still hear a melody: investigating temporal dynamics of the Speech-to-Song Illusion

  • Gerben Groenveld
  • John Ashley Burgoyne
  • Makiko SadakataEmail author
Original Article
  • 31 Downloads

Abstract

The Speech–to-Song Illusion (STS) refers to a dramatic shift in our perception of short speech fragments which, when repeatedly presented, may start to sound-like song. Anecdotally, once it is perceived as a song, it is difficult to unhear the melody of a speech fragment, and such temporal dynamics of the STS illusion has theoretical implications. The goal of the current study is to capture this temporal effect. In our experiment, speech fragments that initially did not elicit the STS illusion were manipulated to have increasingly stable F0 contours to strengthen the perceived ‘song-likeness’ of a fragment. Over the course of trials, the speech fragments with manipulated contours were repeatedly presented within blocks of decreasing, increasing, or random orders of F0 manipulations. Results showed that a presentation order where participants first heard the sentence with the maximum amount of F0 manipulations (decreasing condition) resulted in participants continuously giving higher overall song-like ratings than other presentation orders (increasing or random conditions). Our results thus capture the commonly reported phenomenon that it is hard to ‘unhear’ the illusion once a speech segment has been perceived as song.

Notes

Supplementary material

426_2018_1135_MOESM1_ESM.wav (102 kb)
Supplementary material 1 (WAV 102 KB)
426_2018_1135_MOESM2_ESM.wav (102 kb)
Supplementary material 2 (WAV 102 KB)
426_2018_1135_MOESM3_ESM.wav (102 kb)
Supplementary material 3 (WAV 102 KB)
426_2018_1135_MOESM4_ESM.wav (102 kb)
Supplementary material 4 (WAV 102 KB)

References

  1. Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences.  https://doi.org/10.1016/j.tics.2004.08.011.CrossRefPubMedGoogle Scholar
  2. Beatty, W. W., Zavadil, K. D., Bailly, R. C., & Rixen, G. J. (1988). Preserved musical skill in a severely demented patient. International Journal of Clinical Neuropsychology, 10(4), 158–164.Google Scholar
  3. Binder, J. R. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512–528.  https://doi.org/10.1093/cercor/10.5.512.CrossRefPubMedGoogle Scholar
  4. Boersma, P. (2001). Praat, a system for doing phonetics by computer. Glot International, 5(9/10), 341–347.  https://doi.org/10.1097/AUD.0b013e31821473f7.CrossRefGoogle Scholar
  5. Castro, N., Mendoza, J. M., Tampke, E. C., & Vitevitch, M. S. (2018). An account of the speech-to-song illusion using node structure theory. PLoS One.  https://doi.org/10.1371/journal.pone.0198656.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(03), 181–204.CrossRefGoogle Scholar
  7. Cornelissen, B., Sadakata, M., & Honing, H. (2016). A classification approach to the speech to song transformation. In International conference on music perception and cognition, p. 386. San Francisco.Google Scholar
  8. Deutsch, D., Henthorn, T., & Lapidis, R. (2011). Illusory transformation from speech to song. The Journal of the Acoustical Society of America, 129(4), 2245–2252.  https://doi.org/10.1121/1.3562174.CrossRefPubMedGoogle Scholar
  9. Falk, S., Rathcke, T., & Dalla Bella, S. (2014). When speech sounds like music. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1491–1506.  https://doi.org/10.1037/a0036858.CrossRefPubMedGoogle Scholar
  10. Gregory, R. L. (1973). Eye and brain: The psychology of seeing. British Medical Journal, 4(5893), 682.  https://doi.org/10.1136/bmj.4.5893.682-b.CrossRefGoogle Scholar
  11. Hochstein, S., & Ahissar, M. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791–804.CrossRefGoogle Scholar
  12. Jaisin, K., Suphanchaimat, R., Figueroa Candia, M. A., & Warren, J. D. (2016). The speech-to-song illusion is reduced in speakers of tonal (vs. non-tonal) languages. Frontiers in Psychology.  https://doi.org/10.3389/fpsyg.2016.00662.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Koelsch, S., Gunter, T. C., Cramon, D.Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002). Bach speaks: A cortical “language-network” serves the processing of music. NeuroImage, 17(2), 956–966.  https://doi.org/10.1016/S1053-8119(02)91154-7.CrossRefPubMedGoogle Scholar
  14. Margulis, E. H. (2013). Repetition and emotive communication in music versus speech. Frontiers in Psychology.  https://doi.org/10.3389/fpsyg.2013.00167.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Margulis, E. H. (2014). On repeat: How music plays the mind. New York: Oxford Univesrity Press.Google Scholar
  16. Margulis, E. H., Simchy-Gross, R., & Black, J. L. (2015). Pronunciation difficulty, temporal regularity, and the speech-to-song illusion. Frontiers in Psychology.  https://doi.org/10.3389/fpsyg.2015.00048.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. (J. Snyder, Ed.). PLoS One.  https://doi.org/10.1371/journal.pone.0089642.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780195123753.001.0001.CrossRefGoogle Scholar
  19. Patel, A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology.  https://doi.org/10.3389/fpsyg.2011.00142.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Patel, A. D., Conard, N., Malina, M., Münzel, S., Brown, S., Jordania, J., Schmidt, M. (2014). The evolutionary biology of musical rhythm: Was Darwin wrong? PLoS Biology, 12(3), e1001821.  https://doi.org/10.1371/journal.pbio.1001821.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688–691.  https://doi.org/10.1038/nn1083.CrossRefPubMedGoogle Scholar
  22. Peretz, I., & Morais, J. (1993). Specificity for music. In F. Boller & J. Grahman (Eds.), Handbook of neuropsychology (vol 8, pp. 373–390). Amsterdam: Elsevier S.Google Scholar
  23. Remez, R. E., Rubin, P. E., Pisoni, D. B., & Carell, T. D. (1981). Speech perception without traditional speech cues. Science.  https://doi.org/10.1126/science.7233191.CrossRefPubMedGoogle Scholar
  24. Roncaglia-Denissen, M. P., Roor, D. A., Chen, A., & Sadakata, M. (2016). The enhanced musical rhythmic perception in second language learners. Frontiers in Human Neuroscience, 10, 288.  https://doi.org/10.3389/fnhum.2016.00288.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sadakata, M., & Sekiyama, K. (2011). Enhanced perception of various linguistic features by musicians: A cross-linguistic study. Acta Psychologica, 138(1), 1–10ß.  https://doi.org/10.1016/j.actpsy.2011.03.007.CrossRefPubMedGoogle Scholar
  26. Schonwiesner, M., Rübsamen, R., & Von Cramon, D. Y. (2005). Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. European Journal of Neuroscience, 22(6), 1521–1528.  https://doi.org/10.1111/j.1460-9568.2005.04315.x.CrossRefPubMedGoogle Scholar
  27. Tervaniemi, M., Kujala, A., Alho, K., Virtanen, J., Ilmoniemi, R. J., & Näätänen, R. (1999). Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study. NeuroImage, 9(3), 330–336.  https://doi.org/10.1006/nimg.1999.0405.CrossRefPubMedGoogle Scholar
  28. Tervaniemi, M., Medvedev, S. V., Alho, K., Pakhomov, S. V., Roudas, M. S., Van Zuijen, T. L., & Näätänen, R. (2000). Lateralized automatic auditory processing of phonetic versus musical information: A PET study. Human Brain Mapping, 10(2), 74–79.  https://doi.org/10.1002/(SICI)1097-0193(200006)10:2%3C74::AID-HBM30%3E3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  29. Tierney, A., Dick, F., Deutsch, D., & Sereno, M. (2013). Speech versus song: Multiple pitch-sensitive areas revealed by a naturally occurring musical illusion. Cerebral Cortex, 23(2), 249–254.  https://doi.org/10.1093/cercor/bhs003.CrossRefPubMedGoogle Scholar
  30. Tierney, A., Patel, A. D., & Breen, M. (2018). Acoustic foundations of the speech-to-song illusion. Journal of Experimental Psychology: General.  https://doi.org/10.1037/xge0000455.CrossRefGoogle Scholar
  31. Vanden Bosch der Nederlanden, C. M., Hannon, E. E., & Snyder, J. S. (2015). Everyday musical experience is sufficient to perceive the speech-to-song illusion. Journal of Experimental Psychology: General, 144(2), e43–e49.  https://doi.org/10.1037/xge0000056.CrossRefGoogle Scholar
  32. Vanden Bosch der Vederlanden, C. M., Hannon, E. E., & Snyder, J. S. (2015). Finding the music of speech: Musical knowledge influences pitch processing in speech. Cognition.  https://doi.org/10.1016/j.cognition.2015.06.015.CrossRefGoogle Scholar
  33. Warren, R. M., & Gregory, R. L. (1958). An auditory analogue of the visual reversible figure. The American Journal of Psychology.  https://doi.org/10.2307/1420267.CrossRefPubMedGoogle Scholar
  34. Zatorre, R. J., & Baum, S. R. (2012). Musical melody and speech intonation: Singing a different tune. PLoS Biology, 10(7), 5.  https://doi.org/10.1371/journal.pbio.1001372.CrossRefGoogle Scholar
  35. Zatorre, R. J., & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex (New York, N.Y.: 1991), 11(10), 946–953.  https://doi.org/10.1093/cercor/11.10.946.CrossRefGoogle Scholar
  36. Zatorre, R. J., & Gandour, J. T. (2008). Neural specializations for speech and pitch: Moving beyond the dichotomies. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1493), 1087–1104.  https://doi.org/10.1098/rstb.2007.2161.CrossRefGoogle Scholar
  37. Zatorre, R. J., Meyer, E., Gjedde, A., & Evans, A. C. (1996). PET studies of phonetic processing of speech: Review, replication, and reanalysis. Cerebral Cortex, 6(1), 21–30.  https://doi.org/10.1093/cercor/6.1.21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Musicology DepartmentUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Artificial Intelligence DepartmentRadboud UniversityNijmegenThe Netherlands

Personalised recommendations