Advertisement

Stripping #The Dress: the importance of contextual information on inter-individual differences in colour perception

  • Domicele Jonauskaite
  • Nele Dael
  • C. Alejandro Parraga
  • Laetitia Chèvre
  • Alejandro García Sánchez
  • Christine Mohr
Original Article
  • 80 Downloads

Abstract

In 2015, a picture of a Dress (henceforth the Dress) triggered popular and scientific interest; some reported seeing the Dress in white and gold (W&G) and others in blue and black (B&B). We aimed to describe the phenomenon and investigate the role of contextualization. Few days after the Dress had appeared on the Internet, we projected it to 240 students on two large screens in the classroom. Participants reported seeing the Dress in B&B (48%), W&G (38%), or blue and brown (B&Br; 7%). Amongst numerous socio-demographic variables, we only observed that W&G viewers were most likely to have always seen the Dress as W&G. In the laboratory, we tested how much contextual information is necessary for the phenomenon to occur. Fifty-seven participants selected colours most precisely matching predominant colours of parts or the full Dress. We presented, in this order, small squares (a), vertical strips (b), and the full Dress (c). We found that (1) B&B, B&Br, and W&G viewers had selected colours differing in lightness and chroma levels for contextualized images only (b, c conditions) and hue for fully contextualized condition only (c) and (2) B&B viewers selected colours most closely matching displayed colours of the Dress. Thus, the Dress phenomenon emerges due to inter-individual differences in subjectively perceived lightness, chroma, and hue, at least when all aspects of the picture need to be integrated. Our results support the previous conclusions that contextual information is key to colour perception; it should be important to understand how this actually happens.

Notes

Acknowledgements

We wish to thank Loïc Gigandet and Simona Scopazzini for collecting part of the data. We also wish to thank AkzoNobel, Imperial Chemical Industries (ICI) Limited, in particular Dr David Elliott, Dr Tom Curwen and Peter Spiers, Color R&I team, Slough, UK, and Stephanie Kraneveld, Sassenheim, the Netherlands, for having supported our empirical work on colours and emotions.

Funding

 The research was supported by the Institute of Psychology, University of Lausanne and the Swiss National Science Foundation Doc. CH fellowship grant to DJ (P0LAP1_175055).

Compliance with ethical standards

Conflict of interest

No conflicts of interest are declared.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. No specific ethical clearance was received for this study, as it was not required by the Canton of Vaud in Switzerland law.

Informed consent

Informed consent was obtained from all individual participants.

Supplementary material

426_2018_1097_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2462 KB)

References

  1. Agostinelli, C., & Lund, U. (2017). R package “circular”: Circular statistics (version 0.4–93). Retrieved May 1, 2018, from https://r-forge.r-project.org/projects/circular/.
  2. Aston, S., & Hurlbert, A. (2017). What #The Dress reveals about the role of illumination priors in color perception and color constancy. Journal of Vision, 17(9), 1–18.  https://doi.org/10.1167/17.9.4.CrossRefGoogle Scholar
  3. Bergsma, W. P., Croon, M. A., & Hagenaars, J. A. (2009). Marginal models: For dependent, clustered, and longitudinal categorical data. Berlin: Springer.Google Scholar
  4. Bergsma, W. P., & Van der Ark, L. A. (2015). CMM: Categorical marginal models. R package version 0.8.Google Scholar
  5. Brainard, D. H., & Hurlbert, A. C. (2015). Colour vision: Understanding #The Dress. Current Biology, 25(13), R551–R554.  https://doi.org/10.1016/j.cub.2015.05.020.CrossRefPubMedGoogle Scholar
  6. Carbon, C. C., Grüter, M., & Grüter, T. (2013). Age-dependent face detection and face categorization performance. PLoS One, 8(10), 1–7.  https://doi.org/10.1371/journal.pone.0079164.CrossRefGoogle Scholar
  7. Chetverikov, A., & Ivanchei, I. (2016). Seeing “the Dress” in the right light: Perceived colors and inferred light sources. Perception, 45(8), 910–930.  https://doi.org/10.1177/0301006616643664.CrossRefPubMedGoogle Scholar
  8. Corney, D., & Lotto, R. B. (2007). What are lightness illusions and why do we see them? PLoS Computational Biology, 3(9), 1790–1800.  https://doi.org/10.1371/journal.pcbi.0030180.CrossRefPubMedGoogle Scholar
  9. Dixon, E. L., & Shapiro, A. G. (2017). Spatial filtering, color constancy, and the color-changing dress. Journal of Vision, 17(3), 1–20.  https://doi.org/10.1167/17.3.7.CrossRefGoogle Scholar
  10. Drissi Daoudi, L., Doerig, A., Parkosadze, K., Kunchulia, M., & Herzog, M. H. (2017). The role of one-shot learning in #The Dress. Journal of Vision, 17(3), 1–7.  https://doi.org/10.1167/17.3.15.CrossRefGoogle Scholar
  11. Gegenfurtner, K. R., Bloj, M., & Toscani, M. (2015). The many colours of “the dress”. Current Biology, 25(13), R543–R544.  https://doi.org/10.1016/j.cub.2015.04.043.CrossRefPubMedGoogle Scholar
  12. González Martín-Moro, J., Prieto Garrido, F., Gómez Sanz, F., Fuentes Vega, I., Castro Rebollo, M., & Moreno Martín, P. (2018). Which are the colors of the dress? Review of an atypical optic illusion. Archivos de La Sociedad Española de Oftalmología (English Edition), 93(4), 186–192.  https://doi.org/10.1016/j.oftale.2018.02.003.CrossRefGoogle Scholar
  13. Hesslinger, V. M., & Carbon, C.-C. (2016). #The Dress: The role of illumination information and individual differences in the psychophysics of perceiving white-blue ambiguities. iPerception, 7(2), 1–10.  https://doi.org/10.1177/2041669516645592.CrossRefGoogle Scholar
  14. Holderness, C. (2015). What colours are this dress? Retrieved January 30, 2018, from https://www.buzzfeed.com/catesish/help-am-i-going-insane-its-definitely-blue?utm_term=.qwZEEk7wM2#.jrPpp4lo9a.
  15. Hunt, R. W. G., & Pointer, M. R. (2011). Colour order systems. In R. W. G. Hunt & M. R. Pointer (Eds.), Measuring colour (Fourth ed., pp. 155–195). John Wiley & Sons, Ltd.Google Scholar
  16. IBM Corp. (2013). IBM SPSS statistics for Macintosh. Armonk: IBM Corp.Google Scholar
  17. Ishihara, S. (1993). Album-test pour la recherche des dyschromatopsies congenitales, 38 plates edn. [Ishihara’s Test for Colour Deficiency: 38 Plates Edition]. Tokyo: Kanehara. (Original work published 1917).Google Scholar
  18. Jonauskaite, D., Mohr, C., Antonietti, J.-P., Spiers, P. M., Althaus, B., Anil, S., et al. (2016). Most and least preferred colours differ according to object context: New insights from an unrestricted colour range. Plos One, 11(3), 1–22.  https://doi.org/10.1371/journal.pone.0152194.CrossRefGoogle Scholar
  19. Karlsson, B. S. A., & Allwood, C. M. (2016). What is the correct answer about the dress’ colors? Investigating the relation between optimism, previous experience, and answerability. Frontiers in Psychology, 7, 1808.  https://doi.org/10.3389/FPSYG.2016.01808.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lafer-Sousa, R., & Conway, B. R. (2017). #The Dress: Categorical perception of an ambiguous color image. Journal of Vision, 17(12), 1–30.  https://doi.org/10.1167/17.12.25.CrossRefGoogle Scholar
  21. Lafer-Sousa, R., Hermann, K. L., & Conway, B. R. (2015). Striking individual differences in color perception uncovered by “the dress” photograph. Current Biology, 25(13), R545–R546.  https://doi.org/10.1016/j.cub.2015.04.053.CrossRefPubMedGoogle Scholar
  22. Lotto, R. B., & Purves, D. (1999). The effects of color on brightness. Nature Neuroscience, 2(11), 1010–1014.  https://doi.org/10.1038/14808.CrossRefPubMedGoogle Scholar
  23. Mahroo, O. A., Williams, K. M., Hossain, I. T., Yonova-Doing, E., Kozareva, D., Yusuf, A., et al. (2017). Do twins share the same dress code? Quantifying relative genetic and environmental contributions to subjective perceptions of “the dress” in a classical twin study. Journal of Vision, 17(1), 1–7.  https://doi.org/10.1167/17.1.29.CrossRefGoogle Scholar
  24. Mayr, S., Buchner, A., Erdfelder, E., & Faul, F. (2007). A short tutorial of GPower. Tutorials in Quantitative Methods for Psychology, 3(2), 51–59.  https://doi.org/10.1037/0096-1523.32.4.932.CrossRefGoogle Scholar
  25. McManus, I. C., Freegard, M., Moore, J., & Rawles, R. (2010). Science in the making: Right hand, left hand. II: The duck–rabbit figure. Laterality Asymmetries of Body, Brain and Cognition, 15(1–2), 166–185.  https://doi.org/10.1080/13576500802564266.CrossRefGoogle Scholar
  26. Melgosa, M., Gomez-Robledo, L., Suero, I., M., & Fairchild, M. D. (2015). What can we learn from a dress with ambiguous colors? Color Research and Application, 40(5), 525–529.  https://doi.org/10.1002/col.21966.CrossRefGoogle Scholar
  27. Moccia, M., Lavorgna, L., Lanzillo, R., Brescia Morra, V., Tedeschi, G., & Bonavita, S. (2016). The Dress: Transforming a web viral event into a scientific survey. Multiple Sclerosis and Related Disorders, 7, 41–46.  https://doi.org/10.1016/j.msard.2016.03.001.CrossRefPubMedGoogle Scholar
  28. Parraga, C. A., & Akbarinia, A. (2016). NICE: A computational solution to close the gap from colour perception to colour categorization. PLoS One.  https://doi.org/10.1371/journal.pone.0149538.CrossRefPubMedPubMedCentralGoogle Scholar
  29. R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Retrieved May 1, 2018, from https://www.r-project.org/.
  30. Robson, T. (1999). Topics in computerized visual-stimulus generation. In R. H. S. Carpenter & J. G. Robson (Eds.), Vision research: A practical guide to laboratory methods (pp. 81–105). Oxford: Oxford University Press.Google Scholar
  31. Schlaffke, L., Golisch, A., Haag, L. M., Lenz, M., Heba, S., Lissek, S., et al. (2015). The brain’s dress code: How the dress allows to decode the neuronal pathway of an optical illusion. Cortex, 73, 271–275.  https://doi.org/10.1016/j.cortex.2015.08.017.CrossRefPubMedGoogle Scholar
  32. Toscani, M., Gegenfurtner, K. R., & Doerschner, K. (2017). Differences in illumination estimation in #The Dress. Journal of Vision, 17(1), 22.  https://doi.org/10.1167/17.1.22.CrossRefPubMedGoogle Scholar
  33. Vemuri, K., Bisla, K., Mulpuru, S., & Varadarajan, S. (2016). Does normal pupil diameter differences in population underlie the color selection of the #Dress? Journal of the Optical Society of America A, 33(3), 137–142.  https://doi.org/10.1364/JOSAA.33.00A137.CrossRefGoogle Scholar
  34. Wallisch, P. (2017). Illumination assumptions account for individual differences in the perceptual interpretation of a profoundly ambiguous stimulus in the color domain: “The dress”. Journal of Vision, 17(4), 5.  https://doi.org/10.1167/17.4.5.CrossRefPubMedGoogle Scholar
  35. Winkler, A. D., Spillmann, L., Werner, J. S., & Webster, M. A. (2015). Asymmetries in blue-yellow color perception and in the color of “the dress”. Current Biology, 25(13), R547–R548.  https://doi.org/10.1016/j.cub.2015.05.004.CrossRefPubMedGoogle Scholar
  36. Witzel, C., Racey, C., & O’Regan, J. K. (2017). The most reasonable explanation of “the dress”: Implicit assumptions about illumination. Journal of Vision, 17(2), 1–19.  https://doi.org/10.1167/17.2.1.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of PsychologyUniversity of LausanneLausanneSwitzerland
  2. 2.Computer Vision Center/Computer Science DepartmentUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations