Advertisement

Psychological Research

, Volume 83, Issue 2, pp 357–372 | Cite as

Efficacy of binaural auditory beats in cognition, anxiety, and pain perception: a meta-analysis

  • Miguel Garcia-ArgibayEmail author
  • Miguel A. Santed
  • José M. Reales
Original Article

Abstract

Binaural auditory beats are a perceptual phenomenon that occurs when presenting separately to each ear two tones that slightly differ in their frequency. It has been suggested that binaural beats can influence cognition and mental states among others. The objective of this meta-analysis was to study the effect of binaural beats on memory, attention, anxiety, and analgesia. Twenty-two studies met our inclusion criteria for this meta-analysis. The results, based on 35 effect sizes, showed an overall medium, significant, consistent effect size (g = 0.45). Meta-regression results indicated that it does not seem to be necessary to mask binaural beats with white noise or pink noise in terms of effectiveness, obtaining similar effects with unmasked binaural beats. Moreover, the findings suggest that binaural-beat exposure before, and before and during the task produces superior results than exposure during the task. Time under exposure contributed significantly to the model indicating that longer periods are advisable to ensure maximum effectiveness. Our meta-analysis adds to the growing evidence that binaural-beat exposure is an effective way to affect cognition over and above reducing anxiety levels and the perception of pain without prior training, and that the direction and the magnitude of the effect depends upon the frequency used, time under exposure, and the moment in which the exposure takes place.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

Ethical approval was not needed for this meta-analysis.

Informed consent

Informed consent was not required for this meta-analysis.

References

  1. References preceded by an asterisk indicate studies included in the meta-analysis.Google Scholar
  2. Ades, A. E., Lu, G., & Higgins, J. P. T. (2005). The interpretation of random-effects meta-analysis in decision models. Medical Decision Making, 25(6), 646–654.  https://doi.org/10.1177/0272989X05282643.CrossRefGoogle Scholar
  3. *Beauchene, C., Abaid, N., Moran, R., Diana, R. A., & Leonessa, A. (2016). The effect of binaural beats on visuospatial working memory and cortical connectivity. PLoS ONE, 11(11), e0166630.  https://doi.org/10.1371/journal.pone.0166630.CrossRefGoogle Scholar
  4. *Beauchene, C., Abaid, N., Moran, R., Diana, R. A., & Leonessa, A. (2017). The effect of binaural beats on verbal working memory and cortical connectivity. Journal of Neural Engineering, 14(2), 026014.  https://doi.org/10.1088/1741-2552/aa5d67.CrossRefGoogle Scholar
  5. Begg, C. B., & Mazumdar, M. (1994). Operating Characteristics of a Rank Correlation Test for Publication Bias. Biometrics, 50(4), 1088–1101.  https://doi.org/10.2307/2533446.CrossRefGoogle Scholar
  6. Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics. Hoboken: Wiley.  https://doi.org/10.1002/0471725153.CrossRefGoogle Scholar
  7. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester: Wiley.  https://doi.org/10.1002/9780470743386.CrossRefGoogle Scholar
  8. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97–111.  https://doi.org/10.1002/jrsm.12.CrossRefGoogle Scholar
  9. Botella, B. A., & Meca, J. S. (2015). Meta-análisis en ciencias sociales y de la salud. Madrid: Síntesis.Google Scholar
  10. Brady, B., & Stevens, L. (2000). Binaural-beat induced theta EEG activity and hypnotic susceptibility. American Journal of Clinical Hypnosis, 43(1), 53–69.  https://doi.org/10.1080/00029157.2000.10404255.CrossRefGoogle Scholar
  11. Breusch, T. S., & Pagan, A. R. (1979). A Simple test for heteroscedasticity and random coefficient variation. Econometrica, 47(5), 1287–1294.  https://doi.org/10.2307/1911963.CrossRefGoogle Scholar
  12. *Colzato, L. S., Barone, H., Sellaro, R., & Hommel, B. (2017a). More attentional focusing through binaural beats: evidence from the global-local task. Psychological Research, 81(1), 271–277.  https://doi.org/10.1007/s00426-015-0727-0.CrossRefGoogle Scholar
  13. *Colzato, L. S., Steenbergen, L., & Sellaro, R. (2017b). The effect of gamma-enhancing binaural beats on the control of feature bindings. Experimental Brain Research, 235(7), 2125–2131.  https://doi.org/10.1007/s00221-017-4957-9.CrossRefGoogle Scholar
  14. Cook, R., & Weisberg, S. (1982). Residuals and influence in regression. London: Chapman & Hall.Google Scholar
  15. *Crespo, A., Recuero, M., Galvez, G., & Begoña, A. (2013). Effect of binaural stimulation on attention and EEG. Archives of Acoustics, 38(4), 517–528.  https://doi.org/10.2478/aoa-2013-0061.CrossRefGoogle Scholar
  16. *Dabu-Bondoc, S., Vadivelu, N., Benson, J., Perret, D., & Kain, Z. N. (2010). Hemispheric synchronized sounds and perioperative analgesic requirements. Anesthesia & Analgesia, 110(1), 208–210.  https://doi.org/10.1213/ANE.0b013e3181bea424.CrossRefGoogle Scholar
  17. Draganova, R., Ross, B., Wollbrink, A., & Pantev, C. (2008). Cortical steady-state responses to central and peripheral auditory beats. Cerebral Cortex, 18(5), 1193–1200.  https://doi.org/10.1093/cercor/bhm153.CrossRefGoogle Scholar
  18. Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463.  https://doi.org/10.1111/j.0006-341X.2000.00455.x.CrossRefGoogle Scholar
  19. Ecsy, K., Jones, A., & Brown, C. (2017). Alpha-range visual and auditory stimulation reduces the perception of pain. European Journal of Pain, 21(3), 562–572.  https://doi.org/10.1002/ejp.960.CrossRefGoogle Scholar
  20. Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634.  https://doi.org/10.1136/bmj.315.7109.629.CrossRefGoogle Scholar
  21. Galbraith, R. F. (1988). A note on graphical presentation of estimated odds ratios from several clinical trials. Statistics in Medicine, 7(8), 889–894.  https://doi.org/10.1002/sim.4780070807.CrossRefGoogle Scholar
  22. Gao, X., Cao, H., Ming, D., Qi, H., Wang, X., Wang, X., et al. (2014). Analysis of EEG activity in response to binaural beats with different frequencies. International Journal of Psychophysiology, 94(3), 399–406.  https://doi.org/10.1016/j.ijpsycho.2014.10.010.CrossRefGoogle Scholar
  23. *Garcia-Argibay, M., Santed, M. A., & Reales, J. M. (2017). Binaural auditory beats affect long-term memory. Psychological Research.  https://doi.org/10.1007/s00426-017-0959-2 (Advance online publication)
  24. Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational and Behavioral Statistics, 6(2), 107–128.  https://doi.org/10.3102/10769986006002107.CrossRefGoogle Scholar
  25. Hedges, L. V., & Olkin, L. (1985). Statistical methods for meta-analysis. New York: Academic Press.Google Scholar
  26. Higgins, J. P. T. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560.  https://doi.org/10.1136/bmj.327.7414.557.CrossRefGoogle Scholar
  27. Hink, R. F., Kodera, K., Yamada, O., Kaga, K., & Suzuki, J. (1980). Binaural interaction of a beating frequency-following response. International Journal of Audiology, 19(1), 36–43.  https://doi.org/10.3109/00206098009072647.CrossRefGoogle Scholar
  28. *Hommel, B., Sellaro, R., Fischer, R., Borg, S., & Colzato, L. S. (2016). High-frequency binaural beats increase cognitive flexibility: Evidence from dual-task crosstalk. Frontiers in Psychology, 7, 1287.  https://doi.org/10.3389/fpsyg.2016.01287.Google Scholar
  29. Huang, T. L., & Charyton, C. (2008). A comprehensive review of the psychological effects of brainwave entrainment. Alternative Therapies in Health and Medicine, 14(5), 38–50.Google Scholar
  30. Ioannou, C. I., Pereda, E., Lindsen, J. P., & Bhattacharya, J. (2015). Electrical brain responses to an auditory illusion and the impact of musical expertise. PLoS ONE, 10(6), e0129486.  https://doi.org/10.1371/journal.pone.0129486.CrossRefGoogle Scholar
  31. *Isik, B., Esen, A., Büyükerkmen, B., Kilinç, A., & Menziletoglu, D. (2017). Effectiveness of binaural beats in reducing preoperative dental anxiety. British Journal of Oral and Maxillofacial Surgery.  https://doi.org/10.1016/j.bjoms.2017.02.014
  32. Jirakittayakorn, N., & Wongsawat, Y. (2017). Brain responses to a 6-Hz binaural beat: Effects on general theta rhythm and frontal midline theta activity. Frontiers in Neuroscience, 11, 365.  https://doi.org/10.3389/fnins.2017.00365.CrossRefGoogle Scholar
  33. Jongkees, B. J., & Colzato, L. S. (2016). Spontaneous eye blink rate as predictor of dopamine-related cognitive function—A review. Neuroscience & Biobehavioral Reviews, 71, 58–82.  https://doi.org/10.1016/j.neubiorev.2016.08.020.CrossRefGoogle Scholar
  34. Karino, S. (2006). Neuromagnetic responses to binaural beat in human cerebral cortex. Journal of Neurophysiology, 96(4), 1927–1938.  https://doi.org/10.1152/jn.00859.2005.CrossRefGoogle Scholar
  35. Karino, S., Yumoto, M., Itoh, K., Uno, A., Matsuda, M., Yamakawa, K., et al. (2004). Magnetoencephalographic study of human auditory steady-state responses to binaural beat. International Congress Series, 1270, 169–172.  https://doi.org/10.1016/j.ics.2004.05.072.CrossRefGoogle Scholar
  36. *Kennel, S., Taylor, A. G., Lyon, D., & Bourguignon, C. (2010). Pilot feasibility study of binaural auditory beats for reducing symptoms of inattention in children and adolescents with attention-deficit/hyperactivity disorder. Journal of Pediatric Nursing, 25(1), 3–11.  https://doi.org/10.1016/j.pedn.2008.06.010.CrossRefGoogle Scholar
  37. *Kennerly, R. C. (1994). An empirical investigation into the effect of beta frequency binaural beat audio signals on four measures of human memory (MSc thesis). West Georgia College.Google Scholar
  38. *Kliempt, P., Ruta, D., Ogston, S., Landeck, A., & Martay, K. (1999). Hemispheric-synchronisation during anaesthesia: a double-blind randomised trial using audiotapes for intra-operative nociception control. Anaesthesia, 54(8), 769–773.  https://doi.org/10.1046/j.1365-2044.1999.00958.x.CrossRefGoogle Scholar
  39. *Kraus, J., & Porubanová, M. (2015). The effect of binaural beats on working memory capacity. Studia Psychologica, 57(2), 135.CrossRefGoogle Scholar
  40. Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320(5872), 110–113.  https://doi.org/10.1126/science.1154735.CrossRefGoogle Scholar
  41. *Lane, J. D., Kasian, S. J., Owens, J. E., & Marsh, G. R. (1998). Binaural auditory beats affect vigilance performance and mood. Physiology & Behavior, 63(2), 249–252.  https://doi.org/10.1016/S0031-9384(97)00436-8.CrossRefGoogle Scholar
  42. Le Scouarnec, R. P., Poirier, R. M., Owens, J. E., Gauthier, J., Taylor, A. G., & Foresman, P. A. (2001). Use of binaural beat tapes for treatment of anxiety: A pilot study of tape preference and outcomes. Alternative Therapies in Health and Medicine, 7(1), 58–63.Google Scholar
  43. Lentz, J. J., He, Y., & Townsend, J. T. (2014). A new perspective on binaural integration using response time methodology: Super capacity revealed in conditions of binaural masking release. Frontiers in Human Neuroscience, 8, 641.  https://doi.org/10.3389/fnhum.2014.00641.CrossRefGoogle Scholar
  44. *Lewis, A. K., Osborn, I. P., & Roth, R. (2004). The Effect of hemispheric synchronization on intraoperative analgesia. Anesthesia & Analgesia.  https://doi.org/10.1213/01.ANE.0000096181.89116.D2
  45. London, J. (2004). Hearing in time: Psychological aspects of musical meter. London: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780195160819.001.0001.CrossRefGoogle Scholar
  46. McAuley, J. D. (2010). Tempo and rhythm. In M. Riess Jones, R. R. Fay, & A. N. Popper (Eds.), Music perception (pp. 165–199). New York: Springer.  https://doi.org/10.1007/978-1-4419-6114-3_6.CrossRefGoogle Scholar
  47. *McConnell, P. A., Froeliger, B., Garland, E. L., Ives, J. C., & Sforzo, G. A. (2014). Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal. Frontiers in Psychology, 5, 1248.  https://doi.org/10.3389/fpsyg.2014.01248.CrossRefGoogle Scholar
  48. Moore, B. C. J. (2012). An introduction to the psychology of hearing (6th ed.). London: Brill.Google Scholar
  49. *Ortiz, T., Martínez, A. M., Fernández, A., Maestu, F., Campo, P., Hornero, R., & Poch, J. (2008). Impact of auditory stimulation at a frequency of 5 Hz in verbal memory. Actas Espanolas de Psiquiatria, 36(6), 307–313.Google Scholar
  50. Oster, G. (1973). Auditory beats in the brain. Scientific American, 229(4), 94–102.  https://doi.org/10.1038/scientificamerican1073-94.CrossRefGoogle Scholar
  51. O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690.  https://doi.org/10.1007/s11135-006-9018-6.
  52. *Padmanabhan, R., Hildreth, A. J., & Laws, D. (2005). A prospective, randomised, controlled study examining binaural beat audio and pre-operative anxiety in patients undergoing general anaesthesia for day case surgery. Anaesthesia, 60(9), 874–877.  https://doi.org/10.1111/j.1365-2044.2005.04287.x.CrossRefGoogle Scholar
  53. Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R., & Rushton, L. (2008). Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. Journal of Clinical Epidemiology, 61(10), 991–996.  https://doi.org/10.1016/j.jclinepi.2007.11.010.CrossRefGoogle Scholar
  54. Phillips-Silver, J., & Keller, P. E. (2012). Searching for roots of entrainment and joint action in early musical interactions. Frontiers in Human Neuroscience, 6, 26.  https://doi.org/10.3389/fnhum.2012.00026.CrossRefGoogle Scholar
  55. R Core Team. (2017). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
  56. Rammsayer, T., Netter, P., & Vogel, W. H. (1993). A neurochemical model underlying differences in reaction times between introverts and extraverts. Personality and Individual Differences, 14(5), 701–712.  https://doi.org/10.1016/0191-8869(93)90118-M.CrossRefGoogle Scholar
  57. Rammsayer, T., & Stahl, J. (2004). Extraversion-related differences in response organization: evidence from lateralized readiness potentials. Biological Psychology, 66(1), 35–49.  https://doi.org/10.1016/j.biopsycho.2003.08.003.CrossRefGoogle Scholar
  58. *Reedijk, S. A., Bolders, A., Colzato, L. S., & Hommel, B. (2015). Eliminating the attentional blink through binaural beats: A case for tailored cognitive enhancement. Frontiers in Psychiatry, 6, 82.  https://doi.org/10.3389/fpsyt.2015.00082.CrossRefGoogle Scholar
  59. Reedijk, S. A., Bolders, A., & Hommel, B. (2013). The impact of binaural beats on creativity. Frontiers in Human Neuroscience, 7, 786.  https://doi.org/10.3389/fnhum.2013.00786.CrossRefGoogle Scholar
  60. Rosenberg, M. S. (2005). The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution, 59(2), 464–468.  https://doi.org/10.1111/j.0014-3820.2005.tb01004.x.CrossRefGoogle Scholar
  61. Rosenthal, R. (1991). Meta-analytic procedures for social research. Thousand Oaks: SAGE Publications, Inc.  https://doi.org/10.4135/9781412984997.CrossRefGoogle Scholar
  62. Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 231–244). New York: Russell Sage Foundation.Google Scholar
  63. Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 9–18.  https://doi.org/10.1016/j.tins.2008.09.012.CrossRefGoogle Scholar
  64. Seifi Ala, T., Ahmadi-Pajouh, M. A., & Nasrabadi, A. M. (2018). Cumulative effects of theta binaural beats on brain power and functional connectivity. Biomedical Signal Processing and Control, 42, 242–252.  https://doi.org/10.1016/j.bspc.2018.01.022.CrossRefGoogle Scholar
  65. Simonsohn, U., Simmons, J. P., & Nelson, L. D. (2015). Better P-curves: Making P-curve analysis more robust to errors, fraud, and ambitious P-hacking, a Reply to Ulrich and Miller (2015). Journal of Experimental Psychology: General, 144(6), 1146–1152.  https://doi.org/10.1037/xge0000104.CrossRefGoogle Scholar
  66. Smith, J. C., Marsh, J. T., & Brown, W. S. (1975). Far-field recorded frequency-following responses: Evidence for the locus of brainstem sources. Electroencephalography and Clinical Neurophysiology, 39(5), 465–472.  https://doi.org/10.1016/0013-4694(75)90047-4.CrossRefGoogle Scholar
  67. Smith, S. L. (1968). Extraversion and sensory threshold. Psychophysiology, 5(3), 293–299.  https://doi.org/10.1111/j.1469-8986.1968.tb02825.x.CrossRefGoogle Scholar
  68. *Solcà, M., Mottaz, A., & Guggisberg, A. G. (2016). Binaural beats increase interhemispheric alpha-band coherence between auditory cortices. Hearing Research, 332, 233–237.  https://doi.org/10.1016/j.heares.2015.09.011.CrossRefGoogle Scholar
  69. Stelmack, R. M., & Campbell, K. B. (1974). Extraversion and auditory sensitivity to high and low frequency. Perceptual and Motor Skills, 38(3), 875–879.  https://doi.org/10.2466/pms.1974.38.3.875.CrossRefGoogle Scholar
  70. Sterne, J. A., & Egger, M. (2001). Funnel plots for detecting bias in meta-analysis. Journal of Clinical Epidemiology, 54(10), 1046–1055.  https://doi.org/10.1016/S0895-4356(01)00377-8.CrossRefGoogle Scholar
  71. Swann, R., Bosanko, S., Cohen, R., Midgley, R., & Seed, K. M. (1982). The brain—A user’s manual (p. 92). New York: GP Putnam’s Sons.Google Scholar
  72. Thompson, S. G., & Higgins, J. P. T. (2002). How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine, 21(11), 1559–1573.  https://doi.org/10.1002/sim.1187.CrossRefGoogle Scholar
  73. Thompson, S. G., & Sharp, S. J. (1999). Explaining heterogeneity in meta-analysis: a comparison of methods. Statistics in Medicine, 18(20), 2693–2708.  https://doi.org/10.1002/(SICI)1097-0258(19991030)18:20%3c2693::AID-SIM235%3e3.0.CO;2-V.CrossRefGoogle Scholar
  74. Tobias, J. V. (1965). Consistency of sex differences in binaural-beat perception. International Audiology, 4(2), 179–182.  https://doi.org/10.3109/05384916509074132.CrossRefGoogle Scholar
  75. van Aert, R. C. M., Wicherts, J. M., & van Assen, M. A. L. M. (2016). Conducting meta-analyses based on p values. Perspectives on Psychological Science, 11(5), 713–729.  https://doi.org/10.1177/1745691616650874.CrossRefGoogle Scholar
  76. Vernon, D. (2009). Human potential: Exploring techniques used to enhance human performance. New York: Routledge.CrossRefGoogle Scholar
  77. Vernon, D., Peryer, G., Louch, J., & Shaw, M. (2014). Tracking EEG changes in response to alpha and beta binaural beats. International Journal of Psychophysiology, 93(1), 134–139.  https://doi.org/10.1016/j.ijpsycho.2012.10.008.CrossRefGoogle Scholar
  78. Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods, 1(2), 112–125.  https://doi.org/10.1002/jrsm.11.CrossRefGoogle Scholar
  79. *Wahbeh, H., Calabrese, C., & Zwickey, H. (2007a). Binaural beat technology in humans: A pilot study to assess psychologic and physiologic effects. The Journal of Alternative and Complementary Medicine, 13(1), 25–32.  https://doi.org/10.1089/acm.2006.6196.CrossRefGoogle Scholar
  80. *Wahbeh, H., Calabrese, C., Zwickey, H., & Zajdel, D. (2007b). Binaural beat technology in humans: A pilot study to assess neuropsychologic, physiologic, and electroencephalographic effects. The Journal of Alternative and Complementary Medicine, 13(2), 199–206.  https://doi.org/10.1089/acm.2006.6201.CrossRefGoogle Scholar
  81. Wang, M. C., & Bushman, B. J. (1998). Using the normal quantile plot to explore meta-analytic data sets. Psychological Methods, 3(1), 46–54.  https://doi.org/10.1037/1082-989X.3.1.46.CrossRefGoogle Scholar
  82. Weiland, T. J., Jelinek, G. A., Macarow, K. E., Samartzis, P., Brown, D. M., Grierson, E. M., et al. (2011). Original sound compositions reduce anxiety in emergency department patients: a randomised controlled trial. The Medical Journal of Australia, 195(11), 694–698.  https://doi.org/10.5694/mja10.10662.CrossRefGoogle Scholar
  83. Zampi, D. D. (2016). Efficacy of theta binaural beats for the treatment of chronic pain. Alternative Therapies in Health and Medicine, 22(1), 32–38.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Behavioral ScienceNational University of Distance Education (UNED)MadridSpain
  2. 2.Department of Personality PsychologyNational University of Distance Education (UNED)MadridSpain

Personalised recommendations