Time dependency of the SNARC effect for different number formats: evidence from saccadic responses
- 27 Downloads
Abstract
In line with the suggestion that the strength of the spatial numerical association of response codes (SNARC) effect was time dependent, the aim of the present study was to assess whether the association strength depends on the processing time of numerical quantity and/or of the time to initiate responses. More specifically, we examined whether and how the SNARC effect could be modulated by number format and effector type. Experiment 1 compared the effect induced by Arabic numbers and number words on the basis of saccadic responses in a parity judgment task. Indeed, previous studies have shown that Arabic numbers lead to faster processing than number words. The results replicated the SNARC effect with Arabic numbers, but not with number words. Experiment 2 was similar to Experiment 1, but this time manual responses (i.e., responses far slower than saccadic ones) were recorded. A strong SNARC effect was observed for both number formats. Further analyses revealed a correlation between mean individual response times and the strength of the SNARC effect. We proposed that the initiation times for saccadic responses may be too short for the SNARC effect to appear, in particular with the written number format for which activation of magnitude takes time. We conclude in terms of time variations resulting from processing specificities related with number format, effector type and also individual reaction and processing speed.
Notes
Acknowledgements
We warmly thank all reviewers for considering this paper. We thank Dr Christelle Lemoine-Lardennois and Dr Alexandra Fayel for their technical skills as well as all participants who volunteered for this study.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.
References
- Brysbaert, M. (2018) Numbers and language: What’s new in the past 25 years?. In A. Henik & W. Fias (Eds.), Heterogeneity of Function in Numerical Cognition. Amsterdam: Elsevier Academic Press.Google Scholar
- Bulf, H., Cassia, V. M., & de Hevia, M. D. (2014). Are numbers, size and brightness equally efficient in orienting visual attention? Evidence from an eye-tracking study. PLoS One, 9(6), e99499. https://doi.org/10.1371/journal.pone.0099499.CrossRefPubMedPubMedCentralGoogle Scholar
- Bulf, H., de Hevia, M. D., & Cassia, V. M. (2016). Small on the left, large on the right: Numbers orient visual attention onto space in preverbal infants. Developmental Science, 19(3), 394–401.CrossRefPubMedGoogle Scholar
- Bull, R., Cleland, A. A., & Mitchell, T. (2013). Sex differences in the spatial representation of number. Journal of Experimental Psychology: General, 142(1), 181.CrossRefGoogle Scholar
- Carling, K. (2000). Resistant outlier rules and the non-Gaussian case. Computational Statistics & Data Analysis, 33(3), 249–258.CrossRefGoogle Scholar
- Casarotti, M., Michielin, M., Zorzi, M., & Umiltà, C. (2007). Temporal order judgment reveals how number magnitude affects visuospatial attention. Cognition, 102(1), 101–117.CrossRefPubMedGoogle Scholar
- Cipora, K., & Nuerk, H. C. (2013). Is the SNARC effect related to the level of mathematics? No systematic relationship observed despite more power, more repetitions, and more direct assessment of arithmetic skill. Quarterly journal of experimental psychology, 66(10), 1974–1991.CrossRefGoogle Scholar
- Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204.CrossRefPubMedGoogle Scholar
- Damian, M. F. (2004). Asymmetries in the processing of Arabic digits and number words. Memory & Cognition, 32(1), 164–171.CrossRefGoogle Scholar
- Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371.CrossRefGoogle Scholar
- Fabbri, M. (2013). Finger counting habits and spatial-numerical association in horizontal and vertical orientations. Journal of Cognition and Culture, 13(1–2), 95–110.CrossRefGoogle Scholar
- Fattorini, E., Pinto, M., Rotondaro, F., & Doricchi, F. (2015). Perceiving numbers does not cause automatic shifts of spatial attention. Cortex, 73, 298–316.CrossRefPubMedGoogle Scholar
- Fias, W. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2(1), 95–110.CrossRefGoogle Scholar
- Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research Psychologische Forschung, 65(4), 250–259.CrossRefPubMedGoogle Scholar
- Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57(5), 822–826.CrossRefPubMedGoogle Scholar
- Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386–392.CrossRefPubMedGoogle Scholar
- Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555–556.CrossRefPubMedGoogle Scholar
- Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Experimental Psychology, 56(5), 361–366.CrossRefPubMedGoogle Scholar
- Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51(2), 91–97.CrossRefPubMedGoogle Scholar
- Fitousi, D., Shaki, S., & Algom, D. (2009). The role of parity, physical size, and magnitude in numerical cognition: The SNARC effect revisited.. Perception & Psychophysics, 71(1), 143–155.CrossRefGoogle Scholar
- Ford, N., & Reynolds, M. G. (2016). Do Arabic numerals activate magnitude automatically? Evidence from the psychological refractory period paradigm. Psychonomic Bulletin & Review, 23(5), 1528–1533.CrossRefGoogle Scholar
- Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: acomputational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 32.PubMedGoogle Scholar
- Glaser, W. R. (1992). Picture naming. Cognition, 42(1), 61–105.CrossRefPubMedGoogle Scholar
- Hartmann, M., & Fischer, M. H. (2016). Exploring the numerical mind by eye-tracking: a special issue. Psychological Research Psychologische Forschung, 80, 325–333.CrossRefPubMedGoogle Scholar
- Hesse, P. N., Fiehler, K., & Bremmer, F. (2015). SNARC Effect in Different Effectors. Perception, 45(1–2), 180–195.PubMedGoogle Scholar
- Hines, T. M. (1990). An odd effect: Lengthened reaction times for judgments about odd digits. Memory & Cognition, 18(1), 40–46.CrossRefGoogle Scholar
- Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24(1), 48–56.CrossRefPubMedGoogle Scholar
- Lindemann, O., Alipour, A., & Fischer, M. H. (2011). Finger counting habits in middle eastern and western individuals: an online survey. Journal of Cross-Cultural Psychology, 42(4), 566–578.CrossRefGoogle Scholar
- Loetscher, T., Bockisch, C. J., & Brugger, P. (2008). Looking for the answer: The mind’s eye in number space. Neuroscience, 151(3), 725–729.CrossRefPubMedGoogle Scholar
- Loetscher, T., Bockisch, C. J., Nicholls, M. E., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20(6), R264–R265.CrossRefGoogle Scholar
- Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18(2), R60–R62.CrossRefGoogle Scholar
- Macnamara, A., Keage, H. A., & Loetscher, T. (2018). Mapping of non-numerical domains on space: a systematic review and meta-analysis. Experimental Brain Research, 236, 335–346. https://doi.org/10.1007/s00221-017-5154-6.CrossRefPubMedGoogle Scholar
- Mock, J., Huber, S., Klein, E., & Moeller, K. (2016). Insights into numerical cognition: Considering eye-fixations in number processing and arithmetic. Psychological Research Psychologische Forschung, 80(3), 334–359.CrossRefPubMedGoogle Scholar
- Myachykov, A., Cangelosi, A., Ellis, R., & Fischer, M. H. (2015). The oculomotor resonance effect in spatial–numerical mapping. Actapsychologica, 161, 162–169.Google Scholar
- Myachykov, A., Ellis, R., Cangelosi, A., & Fischer, M. H. (2016). Ocular drift along the mental number line. Psychological Research Psychologische Forschung, 80(3), 379–388.CrossRefPubMedGoogle Scholar
- Nuerk, H. C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology Section A, 57(5), 835–863.CrossRefGoogle Scholar
- Nuerk, H. C., Wood, G., & Willmes, K. (2005). The universal SNARC effect: The association between number magnitude and space is amodal. Experimental Psychology, 52(3), 187–194.CrossRefPubMedGoogle Scholar
- Roettger, T. B., & Domahs, F. (2015). Grammatical number elicits SNARC and MARC effects as a function of task demands. The Quarterly Journal of Experimental Psychology, 68(6), 1231–1248.CrossRefPubMedGoogle Scholar
- Rugani, R., & de Hevia, M. D. (2017). Number-space associations without language: Evidence from preverbal human infants and non-human animal species. Psychonomic Bulletin & Review, 24(2), 352–369.CrossRefGoogle Scholar
- Schwarz, W., & Keus, I. M. (2004). Moving the eyes along the mental number line: Comparing SNARC effects with saccadic and manual responses. Perception & Psychophysics, 66(4), 651–664.CrossRefGoogle Scholar
- Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328–331.CrossRefGoogle Scholar
- van Dijck, J. P., Abrahamse, E. L., Acar, F., Ketels, B., & Fias, W. (2014). A working memory account of the interaction between numbers and spatial attention. The Quarterly Journal of Experimental Psychology, 67(8), 1500–1513.CrossRefPubMedGoogle Scholar
- Viarouge, A., Hubbard, E. M., & McCandliss, B. D. (2014). The cognitive mechanisms of the SNARC effect: An individual differences approach. PLoS ONE, 9(4), e95756. https://doi.org/10.1371/journal.pone.0095756.CrossRefPubMedPubMedCentralGoogle Scholar
- Wood, G., Nuerk, H. C., & Willmes, K. (2006). Crossed Hands and the Snarc Effect: A failure to Replicate Dehaene, Bossini and Giraux (1993). Cortex, 42(8), 1069–1079.CrossRefPubMedGoogle Scholar
- Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science, 50(4), 489–525.Google Scholar
- Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1), 165–190.CrossRefGoogle Scholar