Skip to main content
Log in

When the rhythm disappears and the mind keeps dancing: sustained effects of attentional entrainment

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Research has demonstrated that the human cognitive system allocates attention most efficiently to a stimulus that occurs in synchrony with an established rhythmic background. However, our environment is dynamic and constantly changing. What happens when rhythms to which our cognitive system adapted disappear? We addressed this question using a visual categorization task comprising emotional and neutral faces. The task was split into three blocks of which the first and the last were completed in silence. The second block was accompanied by an acoustic background rhythm that, for one group of participants, was synchronous with face presentations, and for another group was asynchronous. Irrespective of group, performance improved with background stimulation. Importantly, improved performance extended into the third silent block for the synchronous, but not for the asynchronous group. These data suggest that attentional entrainment resulting from rhythmic environmental regularities disintegrates only gradually after the regularities disappear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson, B., & Sheinberg, D. L. (2008). Effects of temporal context and temporal expectancy on neural activity in inferior temporal cortex. Neuropsychologia, 46(4), 947–957.

    Article  Google Scholar 

  • Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  • Besle, J., Schevon, C. A., Mehta, A. D., Lakatos, P., Goodman, R. R., McKhann, G. M., Emerson, R. G., & Schroeder, C. E. (2011). Tuning of the human neocortex to the temporal dynamics of attended events. Journal of Neuroscience, 31(9), 3176–3185.

    Article  Google Scholar 

  • Brochard, R., Tassin, M., & Zagar, D. (2013). Got rhythm … for better or worse. Cross-modal effects of auditory rhythm on visual word recognition. Cognition, 127(2), 214–219.

    Article  Google Scholar 

  • Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.

    Article  Google Scholar 

  • Chomiak, T., Watts, A., Meyer, N., Pereira, F. V., & Hu, B. (2017). A training approach to improve stepping automaticity while dual-tasking in Parkinson’s disease. Medicine, 96(5), e5934.

  • Correa, A., Lupiáñez, J., & Tudela, P. (2005). Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychonomic Bullentin & Review, 12(2), 328–334.

    Google Scholar 

  • Correa, A., & Nobre, A. C. (2008). Neural modulation by regularity and passage of time. Journal of Neurophysiology, 100, 1649–1655.

    Article  Google Scholar 

  • Coull, J. T., & Nobre, A. C. (19989. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. Journal of Neuroscience, 18, 7426–7435.

  • Cravo, A. M., Rohenkohl, G., Wyart, V., & Nobre, A. C. (2013). Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. Journal of Neuroscience, 33, 4002–4010.

    Article  Google Scholar 

  • Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. New York: Routledge.

    Google Scholar 

  • Degé, F., & Schwarzer, G. (2011). The effect of a music program on phonological awareness in preschoolers. Frontiers in Psychology, 2, 124. https://doi.org/10.1525/mp.2011.29.2.195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanism of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  Google Scholar 

  • Doherty, J. R., Rao, A., Mesulam, M. M., & Nobre, A. C. (2005). Synergistic effect of combined temporal and spatial expectations on visual attention.. Journal of Neuroscience, 25, 8259–8266.

    Article  Google Scholar 

  • Ebner, N. C., Riediger, M., & Lindenberger, U. (2010). FACES—a database of facial expressions in young, middle-aged, and older women and men. Development and validation. Behavioral Research Methods, 42, 351–362.

    Article  Google Scholar 

  • Escoffier, N., Herrmann, C. S., & Schirmer, A. (2015). Auditory rhythms entrain visual processes in the human brain: Evidence from evoked oscillations and event-related potentials. NeuroImage, 111, 267–276.

    Article  Google Scholar 

  • Escoffier, N., Sheng, D. Y., & Schirmer, A. (2010). Unattended Musical Beats Enhance Visual Processing. Acta Psychologica, 135(1), 12–16.

    Article  Google Scholar 

  • Escoffier, N., & Tillmann, B. (2008). The tonal function of a task-irrelevant chord modulates speed of visual processing. Cognition, 107, 1070–1083.

    Article  Google Scholar 

  • Ghazanfar, A, Morrill, R. J., & Kayser, C. (2013). Monkeys are perceptually tuned to facial expressions that exhibit a theta-like speech rhythm. Proc Natl Acad Sci USA., 110, 1959–1963

    Article  Google Scholar 

  • Hallam, S., Price, J., & Katsarou, G. (2002). The effects of background music on primary school pupils’ task performance. Educational Studies, 28(2), 111–122.

    Article  Google Scholar 

  • Henry, M. J., & Obleser, J. (2012). Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proceedings of the National Academy of Sciences, 109(49), 20095–20100.

  • Husain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music Perception, 20, 151–171.

    Article  Google Scholar 

  • Jones, M. R. (1976). Time, our lost dimension: toward a new theory of perception, attention and memory. Psychological Rev, 83(5), 323–355.

    Article  Google Scholar 

  • Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.

    Article  Google Scholar 

  • Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313–319.

    Article  Google Scholar 

  • Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Karageorghis, C. I., & Priest, D. L. (2011). Music in the exercise domain: a review and synthesis (Part II). International Review of Sport and Exercise Psychology, 5(1), 67–84.

    Article  Google Scholar 

  • Kirby, K. N., Gerlanc, D. (2013). BootES: An R package for bootstrap confidence intervals on effect sizes. Behavior Research Methods, 45(4), 905–927.

    Article  Google Scholar 

  • Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320, 110–113.

    Article  Google Scholar 

  • Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94, 1904–1911.

    Article  Google Scholar 

  • Large, E., & Jones, M. R. (1999). The dynamics of attending: How we track time varying events. Psychological Review, 106, 119–159.

    Article  Google Scholar 

  • Nobre, A. C., Rohenkoh,l G., & Stokes, M. (2012). Nervous anticipation: Top-down biasing across space and time. In M. I. Posner (Ed.), Cognitive Neuroscience of Attention 2ed (pp. 159–186). New York: Guilford Press.

    Google Scholar 

  • Nozaradan, S., Peretz, I., & Keller, P. E. (2016). Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Scientific Reports, 6, 20612.

    Article  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.

    Article  Google Scholar 

  • Rohenkohl, G., Cravo, A. M., Wyart, V., & Nobre, A. C. (2012). Temporal expectation improves the quality of sensory information. Journal of Neuroscience, 32, 8424–8428.

    Article  Google Scholar 

  • Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237.

    Article  Google Scholar 

  • Schirmer, A., Meck, W. H., & Penny, T. B. (2016). The Socio-Temporal Brain: Connecting People in Time. Trends in Cognitive Science, 20(10), 760–772.

    Article  Google Scholar 

  • Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neuroscience, 32(1), 9–18.

    Article  Google Scholar 

  • Serences, J. T., Schwarzbach, J., Courtney, S. M., Golay, X., & Yantis, S. (2004). Control of object-based attention in human cortex. Cerebral Cortex, 14(12), 1346–1357.

    Article  Google Scholar 

  • Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies inauditory perception. Nature, 416(6876), 87–90.

    Article  Google Scholar 

  • Stupacher, J., Witte, M., Hove, M. J., & Wood, G. (2016). Neural entrainment in drum rhythms with silent breaks: Evidence from steady-state evoked and event-related potentials. Journal of Cognitive Neuroscience, 28(12), 1865–1877.

    Article  Google Scholar 

  • Tal, I., Large, E. W., Rabinovitch, E., Wei, Y., Schroeder, C. E., Poeppel, D., & Golumbic, Z., E (2017). Neural entrainment to the beat: The “missing-pulse” phenomenon. Journal of Neuroscience, 37(26), 6331–6341.

    Article  Google Scholar 

  • Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The musical ear test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188–196.

    Article  Google Scholar 

  • Wickens, C. D. (1991). Processing resources and attention. In D. L. Damos (Ed.), Multipletask performance (pp. 3–34). London: Taylor and Francis.

    Google Scholar 

Download references

Acknowledgements

We thank Peta Mills for the helping with the data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Trapp.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Research involving human and animal participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trapp, S., Havlicek, O., Schirmer, A. et al. When the rhythm disappears and the mind keeps dancing: sustained effects of attentional entrainment. Psychological Research 84, 81–87 (2020). https://doi.org/10.1007/s00426-018-0983-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-018-0983-x

Navigation