Advertisement

Psychological Research

, Volume 83, Issue 6, pp 1124–1136 | Cite as

Binaural auditory beats affect long-term memory

  • Miguel Garcia-ArgibayEmail author
  • Miguel A. Santed
  • José M. Reales
Original Article

Abstract

The presentation of two pure tones to each ear separately with a slight difference in their frequency results in the perception of a single tone that fluctuates in amplitude at a frequency that equals the difference of interaural frequencies. This perceptual phenomenon is known as binaural auditory beats, and it is thought to entrain electrocortical activity and enhance cognition functions such as attention and memory. The aim of this study was to determine the effect of binaural auditory beats on long-term memory. Participants (n = 32) were kept blind to the goal of the study and performed both the free recall and recognition tasks after being exposed to binaural auditory beats, either in the beta (20 Hz) or theta (5 Hz) frequency bands and white noise as a control condition. Exposure to beta-frequency binaural beats yielded a greater proportion of correctly recalled words and a higher sensitivity index in recognition tasks, while theta-frequency binaural-beat presentation lessened the number of correctly remembered words and the sensitivity index. On the other hand, we could not find differences in the conditional probability for recall given recognition between beta and theta frequencies and white noise, suggesting that the observed changes in recognition were due to the recollection component. These findings indicate that the presentation of binaural auditory beats can affect long-term memory both positively and negatively, depending on the frequency used.

Notes

Acknowledgements

We thank the editor and reviewers for their highly valuable comments and suggestions that led to significant improvement of the manuscript.

Compliance with ethical standards

Conflict of interest

Miguel Garcia-Argibay, Miguel A. Santed, and José M. Reales declare having no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of meditation. Neuroscience Letters, 310(1), 57–60.  https://doi.org/10.1016/S0304-3940(01)02094-8.Google Scholar
  2. Aftanas, L. I., & Golocheikine, S. A. (2002). Non-linear dynamic complexity of the human EEG during meditation. Neuroscience Letters, 330(2), 143–146.  https://doi.org/10.1016/S0304-3940(02)00745-0.Google Scholar
  3. Alameda, J. R., & Cuetos, F. (1995). Diccionario de frecuencias de las unidades lingüísticas del español. Servicio de Publicaciones de La Universidad de Oviedo.Google Scholar
  4. Anderson, A. K., Wais, P. E., & Gabrieli, J. D. E. (2006). Emotion enhances remembrance of neutral events past. Proceedings of the National Academy of Sciences, 103(5), 1599–1604.  https://doi.org/10.1073/pnas.0506308103.Google Scholar
  5. Audacity Team. (2015). Audacity®: Free Audio Editor and Recorder.Google Scholar
  6. Başar-Eroglu, C., Başar, E., Demiralp, T., & Schürmann, M. (1992). P300-response: Possible psychophysiological correlates in delta and theta frequency channels. A review. International Journal of Psychophysiology, 13(2), 161–179.  https://doi.org/10.1016/0167-8760(92)90055-G.Google Scholar
  7. Baumeister, J., Reinecke, K., Liesen, H., & Weiss, M. (2008). Cortical activity of skilled performance in a complex sports related motor task. European Journal of Applied Physiology, 104(4), 625–631.  https://doi.org/10.1007/s00421-008-0811-x.Google Scholar
  8. Beauchene, C., Abaid, N., Moran, R., Diana, R. A., & Leonessa, A. (2016). The effect of binaural beats on visuospatial working memory and cortical connectivity. PLoS One, 11(11), e0166630.  https://doi.org/10.1371/journal.pone.0166630.Google Scholar
  9. Beauchene, C., Abaid, N., Moran, R., Diana, R. A., & Leonessa, A. (2017). The effect of binaural beats on verbal working memory and cortical connectivity. Journal of Neural Engineering, 14(2), 26014.  https://doi.org/10.1088/1741-2552/aa5d67.Google Scholar
  10. Bösel, R. (1993). Die cerebrale Theta-Rhythmizität unterstützt kontextabhängige Diskriminationsleistungen. Kognitionswissenschaft, 3(1), 53–69.Google Scholar
  11. Brady, B., & Stevens, L. (2000). Binaural-beat induced theta EEG activity and hypnotic susceptibility. American Journal of Clinical Hypnosis, 43(1), 53–69.  https://doi.org/10.1080/00029157.2000.10404255.Google Scholar
  12. Brenner, R. P., Ulrich, R. F., Spiker, D. G., Sclabassi, R. J., Reynolds, C. F., Marin, R. S., & Boller, F. (1986). Computerized EEG spectral analysis in elderly normal, demented and depressed subjects. Electroencephalography and Clinical Neurophysiology, 64(6), 483–492.  https://doi.org/10.1016/0013-4694(86)90184-7.Google Scholar
  13. Buchanan, T. W., & Lovallo, W. R. (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology, 26(3), 307–317.  https://doi.org/10.1016/S0306-4530(00)00058-5.Google Scholar
  14. Buzsáki, G. (2006). Rhythms of the brain. New York: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780195301069.001.0001.
  15. Cabeza, R., Grady, C. L., Nyberg, L., McIntosh, A. R., Tulving, E., Kapur, S., Craik, F. I. M. (1997). Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. The Journal of Neuroscience, 17(1), 391–400.Google Scholar
  16. Chen, Y., & Huang, X. (2016). Modulation of alpha and beta oscillations during an n-back task with varying temporal memory load. Frontiers in Psychology, 6, 20–31.  https://doi.org/10.3389/fpsyg.2015.02031.Google Scholar
  17. Colzato, L. S., Barone, H., Sellaro, R., & Hommel, B. (2017a). More attentional focusing through binaural beats: Evidence from the global–local task. Psychological Research Psychologische Forschung, 81(1), 271–277.  https://doi.org/10.1007/s00426-015-0727-0.Google Scholar
  18. Colzato, L. S., Steenbergen, L., & Sellaro, R. (2017b). The effect of gamma-enhancing binaural beats on the control of feature bindings. Experimental Brain Research, 235(7), 2125–2131.  https://doi.org/10.1007/s00221-017-4957-9.Google Scholar
  19. Dabu-Bondoc, S., Vadivelu, N., Benson, J., Perret, D., & Kain, Z. N. (2010). Hemispheric synchronized sounds and perioperative analgesic requirements. Anesthesia & Analgesia, 110(1), 208–210.  https://doi.org/10.1213/ANE.0b013e3181bea424.Google Scholar
  20. Daselaar, S. M., Prince, S. E., Dennis, N. A., Hayes, S. M., Kim, H., & Cabeza, R. (2009). Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Frontiers in Human Neuroscience, 3, 13.  https://doi.org/10.3389/neuro.09.013.2009.Google Scholar
  21. Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences, 100(4), 2157–2162.  https://doi.org/10.1073/pnas.0337195100.Google Scholar
  22. de Vanssay-Maigne, A., Noulhiane, M., Devauchelle, A. D., Rodrigo, S., Baudoin-Chial, S., Meder, J. F., Chassoux, F. (2011). Modulation of encoding and retrieval by recollection and familiarity: Mapping the medial temporal lobe networks. NeuroImage, 58(4), 1131–1138.  https://doi.org/10.1016/j.neuroimage.2011.06.086.Google Scholar
  23. Dickter, C. L., & Kieffaber, P. D. (2013). EEG methods for the psychological sciences. London: Sage.Google Scholar
  24. Draganova, R., Ross, B., Wollbrink, A., & Pantev, C. (2008). Cortical steady-state responses to central and peripheral auditory beats. Cerebral Cortex, 18(5), 1193–1200.  https://doi.org/10.1093/cercor/bhm153.Google Scholar
  25. Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115(1), 131–139.  https://doi.org/10.1016/S1388-2457(03)00353-5.Google Scholar
  26. Evans, J. S. B. T., & Stanovich, K. E. (2013). Dual-process theories of higher cognition. Perspectives on Psychological Science, 8(3), 223–241.  https://doi.org/10.1177/1745691612460685.Google Scholar
  27. Eysenck, M. W. (1976). Arousal, learning, and memory. Psychological Bulletin, 83(3), 389–404.  https://doi.org/10.1037/0033-2909.83.3.389.Google Scholar
  28. Fernández, M. M. (1996). Señales aleatorias y ruido. ETS de Ingenieros de Telecomunicación. http://lmi.bwh.harvard.edu/papers/pdfs/1996/martin-fernandezCOURSE96b.pdf.
  29. Gao, X., Cao, H., Ming, D., Qi, H., Wang, X., Wang, X., Zhou, P. (2014). Analysis of EEG activity in response to binaural beats with different frequencies. International Journal of Psychophysiology, 94(3), 399–406.  https://doi.org/10.1016/j.ijpsycho.2014.10.010.Google Scholar
  30. Goodin, P., Ciorciari, J., Baker, K., Carrey, A.-M., Harper, M., & Kaufman, J. (2012). A high-density EEG investigation into steady state binaural beat stimulation. PLoS One, 7(4), e34789.  https://doi.org/10.1371/journal.pone.0034789.Google Scholar
  31. Grunwald, M., Weiss, T., Krause, W., Beyer, L., Rost, R., Gutberlet, I., & Gertz, H.-J. (1999). Power of theta waves in the EEG of human subjects increases during recall of haptic information. Neuroscience Letters, 260(3), 189–192.  https://doi.org/10.1016/S0304-3940(98)00990-2.Google Scholar
  32. Hebert, R., & Lehmann, D. (1977). Theta bursts: An EEG pattern in normal subjects practising the transcendental meditation technique. Electroencephalography and Clinical Neurophysiology, 42(3), 397–405.  https://doi.org/10.1016/0013-4694(77)90176-6.Google Scholar
  33. Hink, R. F., Kodera, K., Yamada, O., Kaga, K., & Suzuki, J. (1980). Binaural interaction of a beating frequency-following response. International Journal of Audiology, 19(1), 36–43.  https://doi.org/10.3109/00206098009072647.Google Scholar
  34. Hoaglin, D. C., & Iglewicz, B. (1987). Fine-tuning some resistant rules for outlier labeling. Journal of the American Statistical Association, 82(400), 1147.  https://doi.org/10.2307/2289392.Google Scholar
  35. Hoaglin, D. C., Iglewicz, B., & Tukey, J. W. (1986). Performance of some resistant rules for outlier labeling. Journal of the American Statistical Association, 81(396), 991.  https://doi.org/10.2307/2289073.Google Scholar
  36. Hommel, B., Sellaro, R., Fischer, R., Borg, S., & Colzato, L. S. (2016). High-frequency binaural beats increase cognitive flexibility: Evidence from dual-task crosstalk. Frontiers in Psychology, 7, 1287.  https://doi.org/10.3389/fpsyg.2016.01287.Google Scholar
  37. Huang, T. L., & Charyton, C. (2008). A comprehensive review of the psychological effects of brainwave entrainment. Alternative Therapies in Health and Medicine, 14(5), 38–50.Google Scholar
  38. Ioannou, C. I., Pereda, E., Lindsen, J. P., & Bhattacharya, J. (2015). Electrical brain responses to an auditory illusion and the impact of musical expertise. PLoS One, 10(6), e0129486.  https://doi.org/10.1371/journal.pone.0129486.Google Scholar
  39. Jaiswal, N., Ray, W., & Slobounov, S. (2010). Encoding of visual–spatial information in working memory requires more cerebral efforts than retrieval: Evidence from an EEG and virtual reality study. Brain Research, 1347, 80–89.  https://doi.org/10.1016/j.brainres.2010.05.086.Google Scholar
  40. Jirakittayakorn, N., & Wongsawat, Y. (2017). Brain responses to a 6-Hz binaural beat: Effects on general theta rhythm and frontal midline theta activity. Frontiers in Neuroscience, 11, 365.  https://doi.org/10.3389/fnins.2017.00365.Google Scholar
  41. Karino, S. (2006). Neuromagnetic responses to binaural beat in human cerebral cortex. Journal of Neurophysiology, 96(4), 1927–1938.  https://doi.org/10.1152/jn.00859.2005.Google Scholar
  42. Karino, S., Yumoto, M., Itoh, K., Uno, A., Matsuda, M., Yamakawa, K., Kaga, K. (2004). Magnetoencephalographic study of human auditory steady-state responses to binaural beat. International Congress Series, 1270, 169–172.  https://doi.org/10.1016/j.ics.2004.05.072.Google Scholar
  43. Kennerly, R. C. (1994). An empirical investigation into the effect of beta frequency binaural beat audio signals on four measures of human memory (MSc thesis). West Georgia College.Google Scholar
  44. Kensinger, E. A., & Schacter, D. L. (2006). Amygdala activity is associated with the successful encoding of item, but not source, information for positive and negative stimuli. Journal of Neuroscience, 26(9), 2564–2570.  https://doi.org/10.1523/JNEUROSCI.5241-05.2006.Google Scholar
  45. Knight, M., & Mather, M. (2009). Reconciling findings of emotion-induced memory enhancement and impairment of preceding items. Emotion, 9(6), 763–781.  https://doi.org/10.1037/a0017281.Google Scholar
  46. Kopell, N., Whittington, M. A., & Kramer, M. A. (2011). Neuronal assembly dynamics in the beta1 frequency range permits short-term memory. Proceedings of the National Academy of Sciences, 108(9), 3779–3784.  https://doi.org/10.1073/pnas.1019676108.Google Scholar
  47. Kraus, J., & Porubanová, M. (2015). The effect of binaural beats on working memory capacity. Studia Psychologica, 57(2), 135–145.  https://doi.org/10.21909/sp.2015.02.689.Google Scholar
  48. LaBar, K. S., & Phelps, E. A. (1998). Arousal-mediated memory consolidation: Role of the medial temporal lobe in humans. Psychological Science, 9(6), 490–493.  https://doi.org/10.1111/1467-9280.00090.Google Scholar
  49. Lane, J. D., Kasian, S. J., Owens, J. E., & Marsh, G. R. (1998). Binaural auditory beats affect vigilance performance and mood. Physiology and Behavior, 63(2), 249–252.  https://doi.org/10.1016/S0031-9384(97)00436-8.Google Scholar
  50. Lavallee, C. F., Koren, S. A., & Persinger, M. A. (2011). A quantitative electroencephalographic study of meditation and binaural beat entrainment. The Journal of Alternative and Complementary Medicine, 17(4), 351–355.  https://doi.org/10.1089/acm.2009.0691.Google Scholar
  51. Le Scouarnec, R. P., Poirier, R. M., Owens, J. E., Gauthier, J., Taylor, A. G., & Foresman, P. A. (2001). Use of binaural beat tapes for treatment of anxiety: A pilot study of tape preference and outcomes. Alternative Therapies in Health and Medicine, 7(1), 58–63.Google Scholar
  52. Licklider, J. C. R., Webster, J. C., & Hedlun, J. M. (1950). On the frequency limits of binaural beats. The Journal of the Acoustical Society of America, 22(4), 468–473.  https://doi.org/10.1121/1.1906629.Google Scholar
  53. Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide. Mahwah: Psychology Press.Google Scholar
  54. Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological Review, 87(3), 252–271.  https://doi.org/10.1037/0033-295X.87.3.252.Google Scholar
  55. Moore, B. C. J. (2012). An introduction to the psychology of hearing (6th edn.). London: Brill.Google Scholar
  56. Nashiro, K., & Mather, M. (2011). Effects of emotional arousal on memory binding in normal aging and Alzheimer’s disease. The American Journal of Psychology, 124(3), 301–312.  https://doi.org/10.5406/amerjpsyc.124.3.0301.Google Scholar
  57. Nielson, K. A., & Bryant, T. (2005). The effects of non-contingent extrinsic and intrinsic rewards on memory consolidation. Neurobiology of Learning and Memory, 84(1), 42–48.  https://doi.org/10.1016/j.nlm.2005.03.004.Google Scholar
  58. Nielson, K. A., & Powless, M. (2007). Positive and negative sources of emotional arousal enhance long-term word-list retention when induced as long as 30 min after learning. Neurobiology of Learning and Memory, 88(1), 40–47.  https://doi.org/10.1016/j.nlm.2007.03.005.Google Scholar
  59. Ortiz, T., Martínez, A. M., Fernández, A., Maestu, F., Campo, P., Hornero, R., Poch, J. (2008). Impact of auditory stimulation at a frequency of 5 Hz in verbal memory. Actas Espanolas de Psiquiatria, 36(6), 307–313.Google Scholar
  60. Oster, G. (1973). Auditory beats in the brain. Scientific American, 229(4), 94–102.  https://doi.org/10.1038/scientificamerican1073-94.Google Scholar
  61. Padmanabhan, R., Hildreth, A. J., & Laws, D. (2005). A prospective, randomised, controlled study examining binaural beat audio and pre-operative anxiety in patients undergoing general anaesthesia for day case surgery. Anaesthesia, 60(9), 874–877.  https://doi.org/10.1111/j.1365-2044.2005.04287.x.Google Scholar
  62. Paus, T., Zatorre, R. J., Hofle, N., Caramanos, Z., Gotman, J., Petrides, M., & Evans, A. C. (1997). Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. Journal of Cognitive Neuroscience, 9(3), 392–408.  https://doi.org/10.1162/jocn.1997.9.3.392.Google Scholar
  63. Pennekamp, P., Bösel, R., Mecklinger, A., & Ott, H. (1994). Differences in EEG-theta for responded and omitted targets in a sustained attention task. Journal of Psychophysiology, 8(2), 131–141.Google Scholar
  64. Perrott, D. R., & Nelson, M. A. (1969). Limits for the detection of binaural beats. The Journal of the Acoustical Society of America, 46(6B), 1477–1481.  https://doi.org/10.1121/1.1911890.Google Scholar
  65. Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S. M., & D’Esposito, M. (2004). Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 42(1), 2–13.  https://doi.org/10.1016/j.neuropsychologia.2003.07.006.Google Scholar
  66. Reedijk, S. A., Bolders, A., Colzato, L. S., & Hommel, B. (2015). Eliminating the attentional blink through binaural beats: A case for tailored cognitive enhancement. Frontiers in Psychiatry, 6, 82.  https://doi.org/10.3389/fpsyt.2015.00082.Google Scholar
  67. Reedijk, S. A., Bolders, A., & Hommel, B. (2013). The impact of binaural beats on creativity. Frontiers in Human Neuroscience, 7(November), 786.  https://doi.org/10.3389/fnhum.2013.00786.Google Scholar
  68. Saletu, B., & Grünberger, J. (1985). Memory dysfunction and vigilance: Neurophysiological and psychopharmacological aspects. Annals of the New York Academy of Sciences, 444(1 Memory Dysfun), 406–427.  https://doi.org/10.1111/j.1749-6632.1985.tb37604.x.Google Scholar
  69. Smeets, T., Otgaar, H., Candel, I., & Wolf, O. T. (2008). True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval. Psychoneuroendocrinology, 33(10), 1378–1386.  https://doi.org/10.1016/j.psyneuen.2008.07.009.Google Scholar
  70. Smit, A. S., Eling, P. A. T., & Coenen, A. M. (2004). Mental effort affects vigilance enduringly: After-effects in EEG and behavior. International Journal of Psychophysiology, 53(3), 239–243.  https://doi.org/10.1016/j.ijpsycho.2004.04.005.Google Scholar
  71. Smith, J. C., Marsh, J. T., & Brown, W. S. (1975). Far-field recorded frequency-following responses: Evidence for the locus of brainstem sources. Electroencephalography and Clinical Neurophysiology, 39(5), 465–472.  https://doi.org/10.1016/0013-4694(75)90047-4.Google Scholar
  72. Strange, B. A., Hurlemann, R., & Dolan, R. J. (2003). An emotion-induced retrograde amnesia in humans is amygdala- and -adrenergic-dependent. Proceedings of the National Academy of Sciences, 100(23), 13626–13631.  https://doi.org/10.1073/pnas.1635116100.
  73. Swann, R., Bosanko, S., Cohen, R., Midgley, R., & Seed, K. M. (1982). The brain—a user’s manual. New York: GP Putnam’s Sons, p. 92.Google Scholar
  74. Tallon-Baudry, C., Bertrand, O., & Fischer, C. (2001). Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. The Journal of Neuroscience, 21(20), RC177. Retrieved from http://www.jneurosci.org/content/21/20/RC177.
  75. Thompson, L. W., & Obrist, W. D. (1964). EEG correlates of verbal learning and overlearning. Electroencephalography and Clinical Neurophysiology, 16(4), 332–342.  https://doi.org/10.1016/0013-4694(64)90067-7.Google Scholar
  76. Tobias, J. V. (1965). Consistency of sex differences in binaural-beat perception. International Audiology, 4(2), 179–182.  https://doi.org/10.3109/05384916509074132.Google Scholar
  77. Tsai, J.-F., Jou, S.-H., Cho, W., & Lin, C.-M. (2013). Electroencephalography when meditation advances: A case-based time-series analysis. Cognitive Processing, 14(4), 371–376.  https://doi.org/10.1007/s10339-013-0563-3.Google Scholar
  78. Tulving, E., Kapur, S., Craik, F. I., Moscovitch, M., & Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences, 91(6), 2016–2020.Google Scholar
  79. Vernon, D. (2009). Human potential: Exploring techniques used to enhance human performance. New York: Routledge.Google Scholar
  80. Vernon, D., Peryer, G., Louch, J., & Shaw, M. (2014). Tracking EEG changes in response to alpha and beta binaural beats. International Journal of Psychophysiology, 93(1), 134–139.  https://doi.org/10.1016/j.ijpsycho.2012.10.008.Google Scholar
  81. Wahbeh, H., Calabrese, C., Zwickey, H., & Zajdel, D. (2007). Binaural beat technology in humans: A pilot study to assess neuropsychologic, physiologic, and electroencephalographic effects. The Journal of Alternative and Complementary Medicine, 13(2), 199–206.  https://doi.org/10.1089/acm.2006.6201.Google Scholar
  82. Weiss, S., Mueller, H. M., Schack, B., King, J. W., Kutas, M., & Rappelsberger, P. (2005). Increased neuronal communication accompanying sentence comprehension. International Journal of Psychophysiology, 57(2), 129–141.  https://doi.org/10.1016/jjpsycho.2005.03.013.Google Scholar
  83. Wernick, J. S., & Starr, A. (1968). Binaural interaction in the superior olivary complex of the cat: An analysis of field potentials evoked by binaural-beat stimuli. Journal of Neurophysiology, 31(3), 428–441.Google Scholar
  84. Yamsa-ard, T., & Wongsawat, Y. (2015). The observation of theta wave modulation on brain training by 5 Hz-binaural beat stimulation in seven days. Engineering in Medicine and Biology Society (EMBC), 2015–Novem, 6667–6670.  https://doi.org/10.1109/EMBC.2015.7319922.Google Scholar
  85. Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441–517.  https://doi.org/10.1006/jmla.2002.2864.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Behavioral ScienceNational University of Distance Education (UNED)MadridSpain
  2. 2.Department of Personality PsychologyNational University of Distance Education (UNED)MadridSpain

Personalised recommendations