Advertisement

Psychological Research

, Volume 82, Issue 5, pp 866–875 | Cite as

The visual and haptic contributions to hand perception

  • Lara A. Coelho
  • Claudia LR Gonzalez
Original Article

Abstract

Previous research has found that the perception of our hands is distorted. The characteristics of this distortion are an overestimation of hand width and an underestimation of finger length. The present study examined the role that different sensory modalities (vision and/or haptics) play in the perception of our hands. Participants pointed to their concealed hand in one of three groups: Vision+Haptics, Vision-only, or Haptics-only. Participants in the Vision+Haptics group had vision (non-informative) of the experimental setup and of the pointing hand, but no vision of the hand being estimated. They also experienced haptic feedback as the palm of the hand was in contact with the undersurface of a tabletop, where the estimations were made. Participants in the Vision-only group, instead of placing the hand to be estimated underneath the tabletop, they placed it behind their backs. Participants in this group were asked to imagine as if the hand was under the table when making their estimations. In the Haptics-only group, participants completed the task with the hand underneath the tabletop (as in the Vision+Haptics group) but did so while wearing a blindfold (no vision). All participants estimated the position of ten landmarks on the hand: the fingertip and the metacarpophalangeal joint of each digit. Hand maps were constructed using a 3D motion capture system. Participants in the Haptics-only group produced the most accurate hand maps. We discuss the possibility that vision interferes with somatosensory processing.

Notes

Acknowledgements

Funding was provided by National Sciences and Engineering Research Council of Canada (Grant No. 14367, 45561).

Compliance with ethical standards

Funding

This study was funded by a discovery grant awarded to Claudia LR Gonzalez from the Natural Sciences and Engineering Research Council of Canada.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Azañón, E., Tamè, L., Maravita, A., Linkenauger, S. A., Ferrè, E. R., Tajadura-Jiménez, A., & Longo, M. R. (2016). Multimodal contributions to body representation. Multisensory Research, 29(6–7), 635–661.CrossRefGoogle Scholar
  2. Beck, B., Làdavas, E., & Haggard, P. (2016). Viewing the body modulates both pain sensations and pain responses. Experimental Brain Research, 234(7), 1–11. doi: 10.1007/s00221-016-4585-9.CrossRefGoogle Scholar
  3. Bellan, V., Gilpin, H. R., Stanton, T. R., Newport, R., Gallace, A., & Moseley, G. L. (2015). Untangling visual and proprioceptive contributions to hand localisation over time. Experimental Brain Research, 233(6), 1689–1701.CrossRefPubMedGoogle Scholar
  4. Bolognini, N., Casanova, D., Maravita, A., & Vallar, G. (2012). Bisecting real and fake body parts: Effects of prism adaptation after right brain damage. Frontiers in Human Neuroscience, 6, 115–127. doi: 10.3389/fnhum.2012.00154.CrossRefGoogle Scholar
  5. Brown, S. G., Roy, E. A., Rohr, L. E., & Bryden, P. J. (2006). Using hand performance measures to predict handedness. Laterality, 11(1), 1–14. doi: 10.1080/1357650054200000440.CrossRefPubMedGoogle Scholar
  6. Buchner, H., Kauert, C., & Radermacher, I. (1995). Short-term changes of finger representation at the somatosensory cortex in humans. Neuroscience Letters, 198(1), 57–59. doi: 10.1016/0304-3940(95)11950-2.CrossRefPubMedGoogle Scholar
  7. Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551–557.CrossRefPubMedGoogle Scholar
  8. Butler, A. J., Fink, G. R., Dohle, C., Wunderlich, G., Tellmann, L., Seitz, R. J., & Freund, H. J. (2004). Neural mechanisms underlying reaching for remembered targets cued kinesthetically or visually in left or right hemispace. Human Brain Mapping, 21(3), 165–177. doi: 10.1002/hbm.20001.CrossRefPubMedGoogle Scholar
  9. Coelho, L. A., Zaninelli, G., & Gonzalez, C. L. R. (2016). A kinematic investigation of hand perception. Psychological Research. doi: 10.1007/s00426-016-0815-9.PubMedGoogle Scholar
  10. Colley, A. (1984). Spatial location judgements by right and left-handers. Cortex, 20(1), 47–53.CrossRefPubMedGoogle Scholar
  11. Cormier, J.-M., & Tremblay, F. (2013). Asymmetry in corticomotor facilitation revealed in right-handers in the context of haptic discrimination. Laterality: Asymmetries of Body, Brain and Cognition, 18(3), 365–383.CrossRefGoogle Scholar
  12. Dijkerman, H. C., & de Haan, E. H. F. (2007). Somatosensory processes subserving perception and action. Behavioral and brain sciences. doi: 10.1017/S0140525x07001392.PubMedGoogle Scholar
  13. Fontenot, D. J., & Benton, A. L. (1971). Tactile perception of direction in relation to hemispheric locus of lesion. Neuropsychologia, 9(1), 83–88.CrossRefPubMedGoogle Scholar
  14. Franco, L., & Sperry, R. W. (1977). Hemisphere lateralization for cognitive processing of geometry. Neuropsychologia, 15(1), 107–114.CrossRefPubMedGoogle Scholar
  15. Galati, G., Lobel, E., Vallar, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (2000). The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Experimental Brain Research, 133(2), 156–164.CrossRefPubMedGoogle Scholar
  16. Gallagher, S. (2005). Dynamic models of body schematic processes. Advances in Consciousness Research, 62, 233–250.CrossRefGoogle Scholar
  17. Ganea, N., & Longo, M. R. (2017). Projecting the self outside the body: body representations underlying proprioceptive imagery. Cognition, 162, 41–47.CrossRefPubMedGoogle Scholar
  18. Goble, D. J., & Brown, S. H. (2007). Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement. Experimental Brain Research, 180(4), 693–704. doi: 10.1007/s00221-007-0890-7.CrossRefPubMedGoogle Scholar
  19. Goble, D. J., & Brown, S. H. (2008). Upper limb asymmetries in the matching of proprioceptive versus visual targets. Journal of Neurophysiology, 99(6), 3063–3074. doi: 10.1152/jn.90259.2008.CrossRefPubMedGoogle Scholar
  20. Goble, D. J., Lewis, C. A., & Brown, S. H. (2006). Upper limb asymmetries in the utilization of proprioceptive feedback. Experimental Brain Research, 168(1–2), 307–311. doi: 10.1007/s00221-005-0280-y.CrossRefPubMedGoogle Scholar
  21. Grunwald, M. (2008). Human haptic perception: Basics and applications. Basel, Switzerland: Birkhäuser Verlag.CrossRefGoogle Scholar
  22. Guardia, D., Lafargue, G., Thomas, P., Dodin, V., Cottencin, O., & Luyat, M. (2010). Anticipation of body-scaled action is modified in anorexia nervosa. Neuropsychologia, 48(13), 3961–3966. doi: 10.1016/j.neuropsychologia.2010.09.004.CrossRefPubMedGoogle Scholar
  23. Haggard, P., & Wolpert, D. M. (2005). Disorders of body scheme. Paper presented at the In Freund, HJ, Jeannerod, M., Hallett, M., Leiguarda R.,(Eds.), Higher-Order Motor Disorders.Google Scholar
  24. Harada, T., Saito, D. N., Kashikura, K.-I., Sato, T., Yonekura, Y., Honda, M., & Sadato, N. (2004). Asymmetrical neural substrates of tactile discrimination in humans: a functional magnetic resonance imaging study. The Journal of Neuroscience, 24(34), 7524–7530.CrossRefPubMedGoogle Scholar
  25. Hennighausen, K., Enkelmann, D., Wewetzer, C., & Remschmidt, H. (1999). Body image distortion in Anorexia Nervosa—is there really a perceptual deficit? European Child and Adolescent Psychiatry, 8(3), 200–206.CrossRefPubMedGoogle Scholar
  26. Keysers, C., Kaas, J. H., & Gazzola, V. (2010). Somatosensation in social perception. Nature Reviews Neuroscience, 11(6), 417–428. doi: 10.1038/nrn2833.CrossRefPubMedGoogle Scholar
  27. Kumar, S. (1977). Short term memory for a nonverbal tactual task after cerebral commissurotomy. Cortex, 13(1), 55–61.CrossRefPubMedGoogle Scholar
  28. Lederman, S. J., & Klatzky, R. L. (1990). Haptic classification of common objects: knowledge-driven exploration. Cognitive Psychology, 22(4), 421–459.CrossRefPubMedGoogle Scholar
  29. Linkenauger, S. A., Witt, J. K., Bakdash, J. Z., Stefanucci, J. K., & Proffitt, D. R. (2009). Asymmetrical body perception: a possible role for neural body representations. Psychological Science, 20(11), 1373–1380. doi: 10.1111/j.1467-9280.2009.02447.x.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Loayza, F., Fernández-Seara, M., Aznárez-Sanado, M., & Pastor, M. A. (2011). Right parietal dominance in spatial egocentric discrimination. Neuroimage, 55(2), 635–643.CrossRefPubMedGoogle Scholar
  31. Longo, M. R. (2014). The effects of immediate vision on implicit hand maps. Experimental Brain Research, 232(4), 1241–1247.CrossRefPubMedGoogle Scholar
  32. Longo, M. R., & Haggard, P. (2010). An implicit body representation underlying human position sense. Proceedings of the National Academy of Sciences of the USA, 107(26), 11727–11732. doi: 10.1073/pnas.1003483107.CrossRefPubMedGoogle Scholar
  33. Longo, M. R., & Haggard, P. (2011). Weber’s illusion and body shape: anisotropy of tactile size perception on the hand. Journal of Experimental Psychology: Human Perception and Performance, 37(3), 720. doi: 10.1037/a0021921.PubMedGoogle Scholar
  34. Longo, M. R., & Haggard, P. (2012a). A 2.5-D representation of the human hand. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 9. doi: 10.1037/a0025428.PubMedGoogle Scholar
  35. Longo, M. R., & Haggard, P. (2012b). Implicit body representations and the conscious body image. Acta Psychologica, 141(2), 164–168. doi: 10.1016/j.actpsy.2012.07.015.CrossRefPubMedGoogle Scholar
  36. Longo, M. R., Long, C., & Haggard, P. (2012). Mapping the invisible hand a body model of a phantom limb. Psychological Science, 23(7), 740–742. doi: 10.1177/0956797612441219.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Longo, M. R., & Sadibolova, R. (2013). Seeing the body distorts tactile size perception. Cognition, 126(3), 475–481. doi: 10.1016/j.cognition.2012.11.013.CrossRefPubMedGoogle Scholar
  38. Mirams, L., Poliakoff, E., Brown, R. J., & Lloyd, D. M. (2010). Vision of the body increases interference on the somatic signal detection task. Experimental Brain Research, 202(4), 787–794. doi: 10.1007/s00221-010-2185-7.CrossRefPubMedGoogle Scholar
  39. Oldfield, R.C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMedGoogle Scholar
  40. Paillard, J. (1999). Body Schema and body image—a double dissociation. Motor control, today and tomorrow, 197–214.Google Scholar
  41. Riva, G., Gaudio, S., & Dakanalis, A. (2015). The neuropsychology of self-objectification. European Psychologist. 20, 34–43.CrossRefGoogle Scholar
  42. Saulton, A., Dodds, T. J., Bulthoff, H. H., & de la Rosa, S. (2015). Objects exhibit body model like shape distortions. Experimental Brain Research, 233(5), 1471–1479. doi: 10.1007/s00221-015-4221-0.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Saulton, A., Longo, M. R., Wong, H., Bülthoff, H., & de la Rosa, S. (2016). The role of visual similarity and memory in body model distortions. Acta Psychologica, 164, 103–111. doi: 10.1016/j.actpsy.2015.12.013.CrossRefPubMedGoogle Scholar
  44. Serino, A., & Haggard, P. (2010). Touch and the body. Neuroscience and Biobehavioral Reviews, 34(2), 224–236. doi: 10.1016/j.neubiorev.2009.04.004.CrossRefPubMedGoogle Scholar
  45. Soros, P., Knecht, S., Imai, T., Gurtler, S., Lutkenhoner, B., Ringelstein, E. B., & Henningsen, H. (1999). Cortical asymmetries of the human somatosensory hand representation in right- and left-handers. Neuroscience Letters, 271(2), 89–92. doi: 10.1016/S0304-3940(99)00528-5.CrossRefPubMedGoogle Scholar
  46. Sposito, A., Bolognini, N., Vallar, G., & Maravita, A. (2012). Extension of perceived arm length following tool-use: Clues to plasticity of body metrics. Neuropsychologia, 50(9), 2187–2194. doi: 10.1016/j.neuropsychologia.2012.05.022.CrossRefPubMedGoogle Scholar
  47. Sposito, A., Bolognini, N., Vallar, G., Posteraro, L., & Maravita, A. (2010). The spatial encoding of body parts in patients with neglect and neurologically unimpaired participants. Neuropsychologia, 48(1), 334–340. doi: 10.1016/j.neuropsychologia.2009.09.026.CrossRefPubMedGoogle Scholar
  48. Stone, K. D., & Gonzalez, C. L. R. (2014). Grasping with the eyes of your hands: hapsis and vision modulate hand preference. Experimental Brain Research, 232(2), 385–393.CrossRefPubMedGoogle Scholar
  49. Van Beers, R. J., Sittig, A., & van der Gon, J. (1998). The precision of proprioceptive position sense. Experimental Brain Research, 122(4), 367–377.CrossRefPubMedGoogle Scholar
  50. Van Beers, R. J., Sittig, A. C., & van Der Gon, J. (1999). Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology, 81(3), 1355–1364.CrossRefPubMedGoogle Scholar
  51. Wagman, J. B., Thomas, B. J., McBride, D. M., & Day, B. M. (2013). Perception of maximum reaching height when the means of reaching are no longer in view. Ecological Psychology, 25(1), 63–80.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.The Brain in Action Laboratory, Department of Kinesiology and Physical EducationUniversity of LethbridgeLethbridgeCanada

Personalised recommendations