Advertisement

Psychological Research

, Volume 82, Issue 3, pp 496–506 | Cite as

Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules

  • Michael J. Carter
  • Victoria Smith
  • Anthony N. Carlsen
  • Diane M. Ste-Marie
Original Article

Abstract

A distinct learning advantage has been shown when participants control their knowledge of results (KR) scheduling during practice compared to when the same KR schedule is imposed on the learner without choice (i.e., yoked schedules). Although the learning advantages of self-controlled KR schedules are well-documented, the brain regions contributing to these advantages remain unknown. Identifying key brain regions would not only advance our theoretical understanding of the mechanisms underlying self-controlled learning advantages, but would also highlight regions that could be targeted in more applied settings to boost the already beneficial effects of self-controlled KR schedules. Here, we investigated whether applying anodal transcranial direct current stimulation (tDCS) to the primary motor cortex (M1) would enhance the typically found benefits of learning a novel motor skill with a self-controlled KR schedule. Participants practiced a spatiotemporal task in one of four groups using a factorial combination of KR schedule (self-controlled vs. yoked) and tDCS (anodal vs. sham). Testing occurred on two consecutive days with spatial and temporal accuracy measured on both days and learning was assessed using 24-h retention and transfer tests without KR. All groups improved their performance in practice and a significant effect for practicing with a self-controlled KR schedule compared to a yoked schedule was found for temporal accuracy in transfer, but a similar advantage was not evident in retention. There were no significant differences as a function of KR schedule or tDCS for spatial accuracy in retention or transfer. The lack of a significant tDCS effect suggests that M1 may not strongly contribute to self-controlled KR learning advantages; however, caution is advised with this interpretation as typical self-controlled learning benefits were not strongly replicated in the present experiment.

Notes

Compliance with ethical standards

Funding

Supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Alexander Graham Bell Canada Graduate Scholarship (MJC) and an NSERC Discovery Grant (ANC; RGPIN 418361-2012).

Conflict of interest

None.

Ethical standards

All participants gave written informed consent prior to inclusion in the studies and the studies were conducted in accordance with the ethical guidelines of the University, and hence with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

References

  1. Baraduc, P., Lang, N., Rothwell, J. C., & Wolpert, D. M. (2004). Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Current Biology, 14(3), 252–256. doi: 10.1016/S0960-9822(04)00045-4.CrossRefPubMedGoogle Scholar
  2. Bastian, A. J. (2008). Understanding sensorimotor adaptation and learning for rehabilitation. Current Opinion in Neurology, 21(6), 628–633. doi: 10.1097/WCO.0b013e328315a293.Understanding.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. Journal of Physiology, 591(Pt 7), 1987–2000. doi: 10.1113/jphysiol.2012.249730.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bund, A., & Wiemeyer, J. (2004). Self-controlled learning of a complex motor skill: Effects of the learners’ preferences on performance and self-efficacy. Journal of Human Movement Studies, 47(3), 215–236.Google Scholar
  5. Carlsen, A. N., Eagles, J. S., & MacKinnon, C. D. (2015). Transcranial direct current stimulation over the supplementary motor area modulates the preparatory activation level in the human motor system. Behavioural Brain Research, 279, 68–75. doi: 10.1016/j.bbr.2014.11.009.CrossRefPubMedGoogle Scholar
  6. Carlsen, A. N., Maslovat, D., & Franks, I. M. (2012). Preparation for voluntary movement in healthy and clinical populations: Evidence from startle. Clinical Neurophysiology, 123(1), 21–33. doi: 10.1016/j.clinph.2011.04.028.CrossRefPubMedGoogle Scholar
  7. Carter, M. J., Carlsen, A. N., & Ste-Marie, D. M. (2014). Self-controlled feedback is effective if it is based on the learner’s performance: A replication and extension of Chiviacowsky and Wulf (2005). Frontiers in Psychology, 5, 1325. doi: 10.3389/fpsyg.2014.01325.PubMedPubMedCentralGoogle Scholar
  8. Carter, M. J., Maslovat, D., & Carlsen, A. N. (2015). Anodal transcranial direct current stimulation applied over the supplementary motor area delays spontaneous antiphase-to-in-phase transitions. Journal of Neurophysiology, 113(3), 780–785. doi: 10.1152/jn.00662.2014.CrossRefPubMedGoogle Scholar
  9. Carter, M. J., Maslovat, D., & Carlsen, A. N. (2017). Intentional switches between coordination patterns are faster following anodal-tDCS applied over the supplementary motor area. Brain Stimulation, 10, 162–164. doi: 10.1016/j.brs.2016.11.002.CrossRefPubMedGoogle Scholar
  10. Carter, M. J., & Patterson, J. T. (2012). Self-controlled knowledge of results: Age-related differences in motor learning, strategies, and error detection. Human Movement Science, 31(6), 1459–1472. doi: 10.1016/j.humov.2012.07.008.CrossRefPubMedGoogle Scholar
  11. Carter, M. J., & Ste-Marie, D. M. (2017). An interpolated activity during the knowledge-of-results delay interval eliminates the learning advantages of self-controlled feedback schedules. Psychological Research, 81, 399–406. doi: 10.1007/s00426-016-0757-2.CrossRefPubMedGoogle Scholar
  12. Chiviacowsky, S. (2014). Self-controlled practice: Autonomy protects perceptions of competence and enhances motor learning. Psychology of Sport and Exercise, 15(5), 505–510. doi: 10.1016/j.psychsport.2014.05.003.CrossRefGoogle Scholar
  13. Chiviacowsky, S., & Wulf, G. (2002). Self-controlled feedback: Does it enhance learning because performers get feedback when they need it? Research Quarterly for Exercise and Sport, 73(4), 408–415.CrossRefPubMedGoogle Scholar
  14. Chiviacowsky, S., & Wulf, G. (2005). Self-controlled feedback is effective if it is based on the learner’s performance. Research Quarterly for Exercise and Sport, 76(1), 42–48.CrossRefPubMedGoogle Scholar
  15. Chiviacowsky, S., Wulf, G., de Medeiros, F. L., Kaefer, A., & Wally, R. (2008). Self-controlled feedback in 10-year-old children: Higher feedback frequencies enhance learning. Research Quarterly for Exercise and Sport, 79(1), 122–127.PubMedGoogle Scholar
  16. Chiviacowsky, S., Wulf, G., & Lewthwaite, R. (2012). Self-controlled learning: The importance of protecting perceptions of competence. Frontiers in Psychology, 3. doi: 10.3389/Fpsyg.2012.00458.PubMedPubMedCentralGoogle Scholar
  17. Christova, M., Rafolt, D., & Gallasch, E. (2015). Cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and motor cortical excitability. Behavioural Brain Research, 287, 27–33. doi: 10.1016/j.bbr.2015.03.028.CrossRefPubMedGoogle Scholar
  18. Cogiamanian, F., Marceglia, S., Ardolino, G., Barbieri, S., & Priori, A. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. European Journal of Neuroscience, 26(1), 242–249. doi: 10.1111/j.1460-9568.2007.05633.x.CrossRefPubMedGoogle Scholar
  19. Criscimagna-Hemminger, S. E., Bastian, A. J., & Shadmehr, R. (2010). Size of error affects cerebellar contributions to motor learning. Journal of Neurophysiology, 103(4), 2275–2284. doi: 10.1152/jn.00822.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cuypers, K., Leenus, D. J. F., den Berg, F. E., Nitsche, M. A., Thijs, H., Wenderoth, N., & Meesen, R. L. J. (2013). Is motor learning mediated by tDCS intensity?. PLos One, 8(6). doi: 10.1371/journal.pone.0067344.
  21. DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments, (51). doi: 10.3791/2744.PubMedPubMedCentralGoogle Scholar
  22. Della-Maggiore, V., Malfait, N., Ostry, D. J., & Paus, T. (2004). Stimulation of the posterior parietal cortex interferes with arm trajectory adjustments during the learning of new dynamics. Journal of Neuroscience, 24(44), 9971–9976. doi: 10.1523/JNEUROSCI.2833-04.2004.CrossRefPubMedGoogle Scholar
  23. Fairbrother, J. T., Laughlin, D. D., & Nguyen, T. V. (2012). Self-controlled feedback facilitates motor learning in both high and low activity individuals. Frontiers in Psychology, 3, 323. doi: 10.3389/fpsyg.2012.00323.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 37(12), 742–753. doi: 10.1016/j.tins.2014.08.003.CrossRefPubMedGoogle Scholar
  25. Fischman, M. G. (2015). On the continuing problem of inappropriate learning measures: Comment on Wulf et al. (2014) and Wulf et al. (2015). Human Movement Science, 42, 225–231. doi: 10.1016/j.humov.2015.05.011.CrossRefPubMedGoogle Scholar
  26. Fregni, F., Boggio, P. S., Santos, M. C., Lima, M., Vieira, A. L., Rigonatti, S. P., et al. (2006). Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Movement Disorders, 21(10), 1693–1702. doi: 10.1002/mds.21012.CrossRefPubMedGoogle Scholar
  27. Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845–850. doi: 10.1016/j.clinph.2005.12.003.CrossRefPubMedGoogle Scholar
  28. Grand, K. F., Bruzi, A. T., Dyke, F. B., Godwin, M. M., Leiker, A. M., Thompson, A. G., et al. (2015). Why self-controlled feedback enhances motor learning: Answers from electroencephalography and indices of motivation. Human Movement Science, 43, 23–32. doi: 10.1016/j.humov.2015.06.013.CrossRefPubMedGoogle Scholar
  29. Hadipour-Niktarash, A., Lee, C. K., Desmond, J. E., & Shadmehr, R. (2007). Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex. Journal of Neuroscience, 27(49), 13413–13419. doi: 10.1523/JNEUROSCI.2570-07.2007.CrossRefPubMedGoogle Scholar
  30. Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427–430.CrossRefPubMedGoogle Scholar
  31. Hansen, S., Pfeiffer, J., & Patterson, J. T. (2011). Self-control of feedback during motor learning: Accounting for the absolute amount of feedback using a yoked group with self-control over feedback. Journal of Motor Behavior, 43(2), 113–119. doi: 10.1080/00222895.2010.548421.CrossRefPubMedGoogle Scholar
  32. Hashemirad, F., Zoghi, M., Fitzgerald, P. B., & Jaberzadeh, S. (2016). The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis. Brain and Cognition, 102, 1–12. doi: 10.1016/j.bandc.2015.11.005.CrossRefPubMedGoogle Scholar
  33. Huet, M., Camachon, C., Fernandez, L., Jacobs, D. M., & Montagne, G. (2009). Self-controlled concurrent feedback and the education of attention towards perceptual invariants. Human Movement Science, 28(4), 450–467. doi: 10.1016/j.humov.2008.12.004.CrossRefPubMedGoogle Scholar
  34. Janelle, C. M., Barba, D. A., Frehlich, S. G., Tennant, L. K., & Cauraugh, J. H. (1997). Maximizing performance feedback effectiveness through videotape replay and a self-controlled learning environment. Research Quarterly for Exercise and Sport, 68(4), 269–279.CrossRefPubMedGoogle Scholar
  35. Janelle, C. M., Kim, J., & Singer, R. N. (1995). Subject-controlled performance feedback and learning of a closed motor skill. Perceptual Motor Skills, 81(2), 627–634. doi: 10.2466/pms.1995.81.2.627.CrossRefPubMedGoogle Scholar
  36. Kantak, S. S., Mummidisetty, C. K., & Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning—evidence for competition between implicit and explicit human motor memory systems. European Journal of Neuroscience, 36(5), 2710–2715. doi: 10.1111/j.1460-9568.2012.08175.x.CrossRefPubMedGoogle Scholar
  37. Kantak, S. S., Sullivan, K. J., Fisher, B. E., Knowlton, B. J., & Winstein, C. J. (2010). Neural substrates of motor memory consolidation depend on practice structure. Nature Neuroscience, 13(8), 923–925. doi: 10.1038/Nn.2596.CrossRefPubMedGoogle Scholar
  38. Kantak, S. S., & Winstein, C. J. (2012). Learning-performance distinction and memory processes for motor skills: A focused review and perspective. Behavioural Brain Research, 228(1), 219–231. doi: 10.1016/j.bbr.2011.11.028.CrossRefPubMedGoogle Scholar
  39. Kuo, H. I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644–648. doi: 10.1016/j.brs.2012.09.010.CrossRefPubMedGoogle Scholar
  40. Lewthwaite, R., & Wulf, G. (2012). Motor learning through a motivational lens. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory, and practice (2nd edn., pp. 173–191). London: Routledge.Google Scholar
  41. Lin, C. H., Fisher, B. E., Winstein, C. J., Wu, A. D., & Gordon, J. (2008). Contextual interference effect: Elaborative processing or forgetting-reconstruction? A post hoc analysis of transcranial magnetic stimulation-induced effects on motor learning. Journal of Motor Behavior, 40(6), 578–586. doi: 10.3200/Jmbr.40.6.578-586.CrossRefPubMedGoogle Scholar
  42. Lin, C. H., Fisher, B. E., Wu, A. D., Ko, Y. A., Lee, L. Y., & Winstein, C. J. (2009). Neural correlate of the contextual interference effect in motor learning: A kinematic analysis. Journal of Motor Behavior, 41(3), 232–242.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lin, C. H., Winstein, C. J., Fisher, B. E., & Wu, A. D. (2010). Neural correlates of the contextual interference effect in motor learning: A transcranial magnetic stimulation investigation. Journal of Motor Behavior, 42(4), 223–232.CrossRefPubMedGoogle Scholar
  44. Luft, C. D. (2014). Learning from feedback: The neural mechanisms of feedback processing facilitating better performance. Behavioural Brain Research, 261, 356–368. doi: 10.1016/j.bbr.2013.12.043.CrossRefPubMedGoogle Scholar
  45. Magill, R. A. (1988). Activity during the post-knowledge of results interval can benefit motor skill learning. In O. G. Meijer & K. Roth (Eds.), Complex motor behaviour: The motor-action controversy (pp. 231–246). Elsevier Science Publishers B.V: North Holland.CrossRefGoogle Scholar
  46. Magill, R. A., & Anderson, D. I. (2013). The roles and uses of augmented feedback in motor skill acquisition. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory, and practice (2nd edn.). New York: Routledge.Google Scholar
  47. Marquez, C. M. S., Zhang, X., Swinnen, S. P., Meesen, R., & Wenderoth, N. (2013). Task-specific effect of transcranial direct current stimulation on motor learning. Frontiers in Human Neuroscience, 7. doi: 10.3389/Fnhum.2013.00333.
  48. McDougle, S. D., Ivry, R. B., & Taylor, J. A. (2016). Taking aim at the cognitive side of learning in sensorimotor adaptation tasks. Trends in Cognitive Sciences, 20, 535–544. doi: 10.1016/j.tics.2016.05.002.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.CrossRefPubMedGoogle Scholar
  50. Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644. doi: 10.1038/Nature712.CrossRefPubMedGoogle Scholar
  51. Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., et al. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. doi: 10.1016/j.brs.2008.06.004.CrossRefPubMedGoogle Scholar
  52. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527 Pt 3, 633–639.CrossRefPubMedGoogle Scholar
  53. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.CrossRefPubMedGoogle Scholar
  54. Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626. doi: 10.1162/089892903321662994.CrossRefPubMedGoogle Scholar
  55. O’Connell, N. E., Cossar, J., Marston, L., Wand, B. M., Bunce, D., Moseley, G. L., & de Souza, L. H. (2012). Rethinking clinical trials of transcranial direct current stimulation: Participant and assessor blinding is inadequate at intensities of 2 mA. PLoS One, 7(10). doi: 10.1371/journal.pone.0047514.
  56. Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., et al. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage, 21(1), 99–111.CrossRefPubMedGoogle Scholar
  57. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9(1), 97–113. doi: 10.1016/0028-3932(71)90067-4.CrossRefPubMedGoogle Scholar
  58. Patterson, J. T., & Carter, M. (2010). Learner regulated knowledge of results during the acquisition of multiple timing goals. Human Movement Science, 29(2), 214–227. doi: 10.1016/j.humov.2009.12.003.CrossRefPubMedGoogle Scholar
  59. Patterson, J. T., Carter, M., & Sanli, E. (2011). Decreasing the proportion of self-control trials during the acquisition period does not compromise the learning advantages in a self-controlled context. Research Quarterly for Exercise and Sport, 82(4), 624–633.CrossRefPubMedGoogle Scholar
  60. Patterson, J. T., & Lee, T. D. (2008). Examining the proactive and retroactive placement of augmented information for learning a novel computer alphabet. Canadian Journal of Experimental Psychology, 62(1), 42–50. doi: 10.1037/1196-1961.62.1.42.CrossRefPubMedGoogle Scholar
  61. Patterson, J. T., & Lee, T. D. (2010). Self-regulated frequency of augmented information in skill learning. Canadian Journal of Experimental Psychology, 64(1), 33–40. doi: 10.1037/A0016269.CrossRefPubMedGoogle Scholar
  62. Post, P. G., Fairbrother, J. T., & Barros, J. A. C. (2011). Self-controlled amount of practice benefits learning of a motor skill. Research Quarterly for Exercise and Sport, 82(3), 474–481.CrossRefPubMedGoogle Scholar
  63. Reis, J., & Fritsch, B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Current Opinion in Neurology, 24(6), 590–596. doi: 10.1097/WCO.0b013e32834c3db0.CrossRefPubMedGoogle Scholar
  64. Reis, J., Robertson, E., Krakauer, J. W., Rothwell, J., Marshall, L., Gerloff, C., et al. (2008). Consensus: “Can tDCS and TMS enhance motor learning and memory formation?” Brain Stimulation, 1(4), 363–369. doi: 10.1016/j.brs.2008.08.001.CrossRefPubMedCentralGoogle Scholar
  65. Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., et al. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1590–1595. doi: 10.1073/pnas.0805413106.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Richardson, A. G., Overduin, S. A., Valero-Cabré, A., Padoa-Schioppa, C., Pascual-Leone, A., Bizzi, E., & Press, D. Z. (2006). Disruption of primary motor cortex before learning impairs memory of movement dynamics. The Journal of neuroscience†¯, 26(48), 12466–12470. doi: 10.1523/JNEUROSCI.1139-06.2006.Google Scholar
  67. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & Group, S. T. M. S. C. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120(12), 2008–2039. doi: 10.1016/j.clinph.2009.08.016.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Russo, R., Wallace, D., Fitzgerald, P. B., & Cooper, N. R. (2013). Perception of comfort during active and sham transcranial direct current stimulation: A double blind study. Brain Stimulation, 6(6), 946–951. doi: 10.1016/j.brs.2013.05.009.CrossRefPubMedGoogle Scholar
  69. Sanli, E. A., & Lee, T. D. (2013). Yoked versus self-controlled practice schedules and performance on dual-task transfer tests. The Open Sports Sciences Journal, 6, 62–69. doi: 10.2174/1875399X01306010062.CrossRefGoogle Scholar
  70. Sanli, E. A., Patterson, J. T., Bray, S. R., & Lee, T. D. (2013). Understanding self-controlled motor learning protocols through the self-determination theory. Frontiers in Psychology, 3, 611. doi: 10.3389/fpsyg.2012.00611.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schmidt, R. A. (1975). Schema theory of discrete motor skill learning. Psychological Review, 82(4), 225–260. doi: 10.1037/H0076770.CrossRefGoogle Scholar
  72. Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggests new concepts for training. Psychological Science, 3(4), 207–217. doi: 10.1111/j.1467-9280.1992.tb00029.x.CrossRefGoogle Scholar
  73. Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis (5th edn.). Champaign: Human Kinetics.Google Scholar
  74. Schulz, R., Gerloff, C., & Hummel, F. C. (2013). Non-invasive brain stimulation in neurological diseases. Neuropharmacology, 64, 579–587. doi: 10.1016/j.neuropharm.2012.05.016.CrossRefPubMedGoogle Scholar
  75. Sherwood, D. E. (2010). Detecting and correcting errors in rapid aiming movements: Effects of movement time, distance, and velocity. Research Quarterly for Exercise and Sport, 81(3), 300–309. doi: 10.1080/02701367.2010.10599678.PubMedGoogle Scholar
  76. Sriraman, A., Oishi, T., & Madhavan, S. (2014). Timing-dependent priming effects of tDCS on ankle motor skill learning. Brain Research, 1581, 23–29. doi: 10.1016/j.brainres.2014.07.021.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., & Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49(5), 800–804. doi: 10.1016/j.neuropsychologia.2011.02.009.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ste-Marie, D. M., Carter, M. J., Law, B., Vertes, K. A., & Smith, V. (2015). Self-controlled learning benefits: Examining the contributions of self-efficacy and intrinsic motivation via path analysis. Journal of Sport Sciences. doi: 10.1080/02640414.2015.1130236.Google Scholar
  79. Ste-Marie, D. M., Vertes, K. A., Law, B., & Rymal, A. M. (2013). Learner-controlled self-observation is advantageous for motor skill acquisition. Frontiers in Psychology, 3, 556. doi: 10.3389/fpsyg.2012.00556.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Stock, A. K., Wascher, E., & Beste, C. (2013). Differential effects of motor efference copies and proprioceptive information on response evaluation processes. PLos One, 8(4), e62335. doi: 10.1371/journal.pone.0062335.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Swinnen, S. P. (1988). Post-performance activities and skill learning. In O. G. Meijer & K. Roth (Eds.), Complex motor behaviour: The motor-action controversy (pp. 315–338). Elsevier Science Publishers B.V: North Holland.CrossRefGoogle Scholar
  82. Swinnen, S. P. (1996). Information feedback for motor skill learning: A review. In H. N. Zelaznik (Ed.), Advances in motor learning and control (pp. 37–66). Champaign: Human Kinetics.Google Scholar
  83. Tecchio, F., Zappasodi, F., Assenza, G., Tombini, M., Vollaro, S., Barbati, G., & Rossini, P. M. (2010). Anodal transcranial direct current stimulation enhances procedural consolidation. Journal of Neurophysiology, 104(2), 1134–1140. doi: 10.1152/jn.00661.2009.CrossRefPubMedGoogle Scholar
  84. Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12(12), 739–751. doi: 10.1038/nrn3112.CrossRefPubMedGoogle Scholar
  85. Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–R732.CrossRefPubMedGoogle Scholar
  86. Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.CrossRefPubMedGoogle Scholar
  87. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology. doi: 10.1016/j.clinph.2015.11.012.PubMedGoogle Scholar
  88. Wulf, G., & Lewthwaite, R. (2016). Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychonomic Bulletin and Review. doi: 10.3758/s13423-015-0999-9.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Michael J. Carter
    • 1
    • 2
  • Victoria Smith
    • 1
  • Anthony N. Carlsen
    • 1
  • Diane M. Ste-Marie
    • 1
  1. 1.School of Human KineticsUniversity of OttawaOttawaCanada
  2. 2.Centre for Neuroscience StudiesQueen’s UniversityKingstonCanada

Personalised recommendations