Psychological Research

, Volume 82, Issue 3, pp 468–487 | Cite as

The effects of training on tactile enumeration

  • Zahira Z. Cohen
  • Daniela Aisenberg
  • Avishai Henik
Original Article


Subitizing is a fast and accurate process of enumerating small quantities. Whether subitizing carried out in the tactile modality is under debate. We previously found a moderately increasing RT slope from one to four stimuli and a large decrease in RT for five stimuli when using one hand. Yet, a high error rate was observed, making it difficult to determine if the RT pattern found was indeed subitizing. To increase accuracy, we carried out training of the tactile enumeration task using one hand for 6 days. We compared performance in the trained and additional non-trained tasks between two groups—the 6-day training group (6DT) and the non-trained controls (C)—after three periods (1 week, 1 and 6 months after the training of the 6DT group ended). Results showed an increase in accuracy rates for both groups but a decrease in RT for the 6DT group only for the trained task. This RT improvement was present even after 6 months. Importantly, the RT slope of one-hand enumeration did not change after training, showing a moderately increased slope up to four stimuli and a decrease for five stimuli. Our study shows the training long-term effect on tactile enumeration and emphasizes the embodiment of finger counting on enumeration. Two possible enumeration processes are discussed—accelerated counting and subitizing—both based on spatial cues and pattern recognition of familiarized finger-counting patterns.



This work was conducted as part of the research in the Center for the Study of the Neurocognitive Basis of Numerical Cognition, supported by the Israel Science Foundation (Grant 1799/12) in the framework of their Centers of Excellence. We wish to thank the leading research assistants (in alphabetical order): Shachar Hochman, Michal Krimolowsky, Yaara Mannes, Adi Soria, Sol Yaakobovich, and Meital Zvi. Special thanks are given to Desiree Meloul for her tremendous help along the way.

Compliance with ethical standards

Conflict of interest

All authors have no conflict of interests that might be interpreted as influencing the research.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. An, Q., Matsuoka, Y., & Stepp, C. E. (2011). Multi-day training with vibrotactile feedback for virtual object manipulation. IEEE International Conference on Rehabilitation Robotics, 2011, 5975337. doi: 10.1109/ICORR.2011.5975337.PubMedGoogle Scholar
  2. Atkinson, J., Campbell, F., & Francis, M. (1976). The magic number 4 ± 0: A new look at visual numerosity judgements. Perception, 3, 327–334. doi: 10.1068/p050327.CrossRefGoogle Scholar
  3. Büchel, C., Price, C., Frackowiak, R., & Friston, K. (1998). Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain, 121(3), 409–419. doi: 10.1093/brain/121.3.409.CrossRefPubMedGoogle Scholar
  4. Camos, V., & Tillmann, B. (2008). Discontinuity in the enumeration of sequentially presented auditory and visual stimuli. Cognition, 107(3), 1135–1143. doi: 10.1016/j.cognition.2007.11.002.CrossRefPubMedGoogle Scholar
  5. Cohen, L., Celnik, P., Pascual-Leone, A., Corwell, B., Falz, L., Dambrosia, J., & Hallett, M. (1997). Functional relevance of cross-modal plasticity in blind humans. Nature, 389(6647), 180–183. doi: 10.1038/38278.CrossRefPubMedGoogle Scholar
  6. Cohen, Z. Z., & Henik, A. (2016). Effects of numerosity range on tactile and visual enumeration. Perception, 45(1–2), 83–98. doi: 10.1177/0301006615614662.CrossRefPubMedGoogle Scholar
  7. Cohen, Z. Z., Naparstek, S., & Henik, A. (2014). Tactile enumeration of small quantities using one hand. Acta Psychologica, 150, 26–34. doi: 10.1016/j.actpsy.2014.03.011.CrossRefPubMedGoogle Scholar
  8. Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H. (2010). Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116(2), 251–266. doi: 10.1016/j.cognition.2010.05.007.CrossRefPubMedGoogle Scholar
  9. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305–307. doi: 10.1126/science.270.5234.305.CrossRefPubMedGoogle Scholar
  10. Ferrand, L., Riggs, K. J., & Castronovo, J. (2010). Subitizing in congenitally blind adults. Psychonomic Bulletin and Review, 17(6), 840–845. doi: 10.3758/PBR.17.6.840.CrossRefPubMedGoogle Scholar
  11. Fischer, M. H., & Brugger, P. (2011). When digits help digits: Spatial–numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2(October), 41–47. doi: 10.3389/fpsyg.2011.00260.Google Scholar
  12. Gallace, A., Tan, H., & Spence, C. (2006). Numerosity judgments for tactile stimuli distributed over the body surface. Perception, 35(2), 247–266. doi: 10.1068/p5380.CrossRefPubMedGoogle Scholar
  13. Gallace, A., Tan, H., & Spence, C. (2008). Can tactile stimuli be subitised? An unresolved controversy within the literature on numerosity judgments. Perception, 37(5), 782–800. doi: 10.1068/p5767.CrossRefPubMedGoogle Scholar
  14. Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43(4), 981–986. doi: 10.3758/s13428-011-0097-5.CrossRefPubMedGoogle Scholar
  15. Grant, A. C., Thiagarajah, M. C., & Sathian, K. (2000). Tactile perception in blind Braille readers: A psychophysical study of acuity and hyperacuity using gratings and dot patterns. Perception and Psychophysics, 62(2), 301–312. doi: 10.3758/BF03205550.CrossRefPubMedGoogle Scholar
  16. Harris, J. A., Harris, I. M., & Diamond, M. E. (2001). The topography of tactile learning in humans. The Journal of Neuroscience, 21(3), 1056–1061.CrossRefPubMedGoogle Scholar
  17. Imbo, I., Vandierendonck, A., & Fias, W. (2011). Passive hand movements disrupt adults’ counting strategies. Frontiers in Psychology, 2, 201. doi: 10.3389/fpsyg.2011.00201.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kaufman, E. L., Lord, M. W., Reese, T. W., & Volkmann, J. (1949). The discrimination of visual number. The American Journal of Psychology, 62(4), 498–525. doi: 10.2307/1418556.CrossRefPubMedGoogle Scholar
  19. Lambertz, N., Gizewski, E. R., de Greiff, A., & Forsting, M. (2005). Cross-modal plasticity in deaf subjects dependent on the extent of hearing loss. Brain Research Cognitive Brain Research, 25(3), 884–890. doi: 10.1016/j.cogbrainres.2005.09.010.CrossRefPubMedGoogle Scholar
  20. Levänen, S., & Hamdorf, D. (2001). Feeling vibrations: Enhanced tactile sensitivity in congenitally deaf humans. Neuroscience Letters, 301(1), 75–77. doi: 10.1016/S0304-3940(01)01597-X.CrossRefPubMedGoogle Scholar
  21. Levänen, S., Jousmäki, V., & Hari, R. (1998). Vibration-induced auditory-cortex activation in a congenitally deaf adult. Current Biology, 8(15), 869–872. doi: 10.1016/S0960-9822(07)00348-X.CrossRefPubMedGoogle Scholar
  22. Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology General, 111(1), 1–22. doi: 10.1037/0096-3445.111.1.1.CrossRefPubMedGoogle Scholar
  23. Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314–324. doi: 10.3758/s13428-011-0168-7.CrossRefPubMedGoogle Scholar
  24. Oldfield, R. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. doi: 10.1016/0028-3932(71)90067-4.CrossRefPubMedGoogle Scholar
  25. Pascual-Leone, A., & Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain, 116(1), 39–52. doi: 10.1093/brain/116.1.39.CrossRefPubMedGoogle Scholar
  26. Plaisier, M. A., & Smeets, J. B. J. (2011). Haptic subitizing across the fingers. Attention Perception and Psychophysics, 73(5), 1579–1585. doi: 10.3758/s13414-011-0124-8.CrossRefGoogle Scholar
  27. Plaisier, M. A., Tiest, W. M. B., & Kappers, A. M. L. (2009). One, two, three, many—subitizing in active touch. Acta Psychologica, 131(2), 163–170. doi: 10.1016/j.actpsy.2009.04.003.CrossRefPubMedGoogle Scholar
  28. Plaisier, M. A., Tiest, W. M. B., & Kappers, A. M. L. (2010). Range dependent processing of visual numerosity: Similarities across vision and haptics. Experimental Brain Research, 204(4), 525–537. doi: 10.1007/s00221-010-2319-y.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ptito, M., Moesgaard, S. M., Gjedde, A., & Kupers, R. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain A Journal of Neurology, 128(3), 606–614. doi: 10.1093/brain/awh380.CrossRefPubMedGoogle Scholar
  30. Rauschecker, J. (1995). Compensatory plasticity and sensory substitution in the cerebral cortex. Trends in Neurosciences, 18(1), 36–43. doi: 10.1016/0166-2236(95)93948-W.CrossRefPubMedGoogle Scholar
  31. Recanzone, G. H., Jenkins, W. M., Hradek, G. T., & Merzenich, M. M. (1992). Progressive improvement in discriminative abilities in adult owl monkeys performing a tactile frequency discrimination task. Journal of Neurophysiology, 67(5), 1015–1030.CrossRefPubMedGoogle Scholar
  32. Riggs, K. J., Ferrand, L., Lancelin, D., Fryziel, L., Dumur, G., & Simpson, A. (2006). Subitizing in tactile perception. Psychological Science, 17(4), 271–272. doi: 10.1111/j.1467-9280.2006.01696.x.CrossRefPubMedGoogle Scholar
  33. Sadato, N., Pascual-Leone, A., & Grafman, J. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 380(6574), 526–528. doi: 10.1038/380526a0.CrossRefPubMedGoogle Scholar
  34. Sathian, K. (2000). Practice makes perfect: Sharper tactile perception in the blind. Neurology, 54(12), 2203–2204. doi: 10.1212/WNL.54.12.2203.CrossRefPubMedGoogle Scholar
  35. Sathian, K., & Zangaladze, A. (1997). Tactile learning is task specific but transfers between fingers. Perception and Psychophysics, 59(1), 119–128. doi: 10.3758/BF03206854.CrossRefPubMedGoogle Scholar
  36. Schmauss, D., Megerle, K., Weinzierl, A., Agua, K., Cerny, M., Schmauss, V., & Erne, H. (2015). Microsurgeons do better—tactile training might prevent the age-dependent decline of the sensibility of the hand. Journal of the Peripheral Nervous System, 20(4), 392–396. doi: 10.1111/jns.12144.CrossRefPubMedGoogle Scholar
  37. Starkey, P., & Cooper, R. G. (1995). The development of subitizing in young children. British Journal of Developmental Psychology, 13(4), 399–420. doi: 10.1111/j.2044-835X.1995.tb00688.x.CrossRefGoogle Scholar
  38. Sterr, A., Müller, M. M., Elbert, T., Rockstroh, B., Pantev, C., & Taub, E. (1998). Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. The Journal of Neuroscience, 18(11), 4417–4423.CrossRefPubMedGoogle Scholar
  39. Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can show us about spatial attention: Evidence for limited capacity preattentive processing. Journal of Experimental Psychology Human Perception and Performance, 19(2), 331–351. doi: 10.1037/0096-1523.19.2.331.CrossRefPubMedGoogle Scholar
  40. Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F. (2012). You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers. NeuroImage, 59(4), 3139–3148. doi: 10.1016/j.neuroimage.2011.11.037.CrossRefPubMedGoogle Scholar
  41. Van Boven, R. W., Hamilton, R. H., Kauffman, T., Keenan, J. P., & Pascual-Leone, A. (2000). Tactile spatial resolution in blind braille readers. Neurology, 54, 2230–2246. doi: 10.1212/WNL.55.10.1597.CrossRefPubMedGoogle Scholar
  42. Wong, M., Gnanakumaran, V., & Goldreich, D. (2011). Tactile spatial acuity enhancement in blindness: Evidence for experience-dependent mechanisms. The Journal of Neuroscience, 31(19), 7028–7037. doi: 10.1523/JNEUROSCI.6461-10.2011.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zahira Z. Cohen
    • 1
  • Daniela Aisenberg
    • 1
    • 2
  • Avishai Henik
    • 1
    • 2
  1. 1.Department of PsychologyBen-Gurion University of the NegevBeer ShevaIsrael
  2. 2.Zlotowski Center for NeuroscienceBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations