Psychological Research

, Volume 82, Issue 2, pp 407–428 | Cite as

Crowded environments reduce spatial memory in older but not younger adults

  • Niamh A. Merriman
  • Jan Ondřej
  • Alicia Rybicki
  • Eugenie Roudaia
  • Carol O’Sullivan
  • Fiona N. NewellEmail author
Original Article


Previous studies have reported an age-related decline in spatial abilities. However, little is known about whether the presence of other, task-irrelevant stimuli during learning further affects spatial cognition in older adults. Here we embedded virtual environments with moving crowds of virtual human pedestrians (Experiment 1) or objects (Experiment 2) whilst participants learned a route and landmarks embedded along that route. In subsequent test trials we presented clips from the learned route and measured spatial memory using three different tasks: a route direction task (i.e. whether the video clip shown was a repetition or retracing of the learned route); an intersection direction task; and a task involving identity of the next landmark encountered. In both experiments, spatial memory was tested in two separate sessions: first following learning of an empty maze environment and second using a different maze which was populated. Older adults performed worse than younger adults in all tasks. Moreover, the presence of crowds during learning resulted in a cost in performance to the spatial tasks relative to the ‘no crowds’ condition in older adults but not in younger adults. In contrast, crowd distractors did not affect performance on the landmark sequence task. There was no age-related cost on performance with object distractors. These results suggest that crowds of human pedestrians selectively capture older adults’ attention during learning. These findings offer further insights into how spatial memory is affected by the ageing process, particularly in scenarios which are representative of real-world situations.


Compliance with ethical standards


This research was funded by the European Commission FP7 ‘VERVE’ Project, Grant No. 288914 and by Science Foundation Ireland Principal Investigator Grants (‘Metropolis’ Project Number 06/IN.1/I96 and ‘Socialising Agents’ Project Number 10/IN.1/13003) awarded to FNN and CO’S.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed, written consent was obtained from all individual participants included in the study prior to testing.


  1. Antonova, E., Parslow, D., Brammer, M., Dawson, G. R., Jackson, S. H., & Morris, R. G. (2009). Age-related neural activity during allocentric spatial memory. Memory, 17(2), 125–143. doi: 10.1080/09658210802077348.CrossRefPubMedGoogle Scholar
  2. Arena, A., Hutchinson, C. V., & Shimozaki, S. S. (2012). The effects of age on the spatial and temporal integration of global motion. Vision Research, 58C, 27–32. doi: 10.1016/j.visres.2012.02.004.CrossRefGoogle Scholar
  3. Arnold, A. E., Burles, F., Krivoruchko, T., Liu, I., Rey, C. D., Levy, R. M., & Iaria, G. (2013). Cognitive mapping in humans and its relationship to other orientation skills. Experimental Brain Research, 224(3), 359–372. doi: 10.1007/s00221-012-3316-0.CrossRefPubMedGoogle Scholar
  4. Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press. doi: 10.1002/acp.2350020209.Google Scholar
  5. Benedict, R. H. B., & Zgaljardic, D. J. (1998). Practice effects during repeated administrations of memory tests with and without alternate forms. Journal of Clinical and Experimental Neuropsychology, 20(3), 339–352. doi: 10.1076/jcen.20.3.339.822.CrossRefPubMedGoogle Scholar
  6. Bennett, P. J., Sekuler, R., & Sekuler, A. B. (2007). The effects of aging on motion detection and direction identification. Vision Research, 47(6), 799–809. doi: 10.1016/j.visres.2007.01.001.CrossRefPubMedGoogle Scholar
  7. Berard, J., Fung, J., & Lamontagne, A. (2012). Impact of aging on visual reweighting during locomotion. Clinical Neurophysiology, 123(7), 1422–1428. doi: 10.1016/j.clinph.2011.11.081.CrossRefPubMedGoogle Scholar
  8. Berard, J. R., Fung, J., McFadyen, B. J., & Lamontagne, A. (2009). Aging affects the ability to use optic flow in the control of heading during locomotion. Experimental Brain Research, 194(2), 183–190. doi: 10.1007/s00221-008-1685-1.CrossRefPubMedGoogle Scholar
  9. Billino, J., Bremmer, F., & Gegenfurtner, K. R. (2008). Differential aging of motion processing mechanisms: evidence against general perceptual decline. Vision Research, 48(10), 1254–1261. doi: 10.1016/j.visres.2008.02.014.CrossRefPubMedGoogle Scholar
  10. Burns, P. C. (1999). Navigation and the mobility of older drivers. The Journals of Gerontology. Series B: Psychological Sciences and Social Sciences, 54(1), S49–S55. doi: 10.1093/geronb/54B.1.S49.CrossRefGoogle Scholar
  11. Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychological Review, 114(2), 340–375. doi: 10.1037/0033-295X.114.2.340.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Castelli, L., Latini Corazzini, L., & Geminiani, G. C. (2008). Spatial navigation in large-scale virtual environments: gender differences in survey tasks. Computers in Human Behavior, 24(4), 1643–1667. doi: 10.1016/j.chb.2007.06.005.CrossRefGoogle Scholar
  13. Chao, L. L., & Knight, R. T. (1997). Prefrontal deficits in attention and inhibitory control with aging. Cerebral Cortex, 7(1), 63–69. doi: 10.1093/cercor/7.1.63.CrossRefPubMedGoogle Scholar
  14. Clapp, W. C., Rubens, M. T., & Gazzaley, A. (2010). Mechanisms of working memory disruption by external interference. Cerebral Cortex, 20(4), 859–872. doi: 10.1093/cercor/bhp150.CrossRefPubMedGoogle Scholar
  15. Clapp, W. C., Rubens, M. T., Sabharwal, J., & Gazzaley, A. (2011). Deficit in switching between functional brain networks underlies the impact of multitasking on working memory in older adults. Proceedings of the National Academy of Sciences of the United States of America, 108(17), 7212–7217. doi: 10.1073/pnas.1015297108.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Davidson, D. J., Zacks, R. T., & Williams, C. C. (2003). Stroop interference, practice, and aging. Aging, Neuropsychology and Cognition, 10(2), 85–98. doi: 10.1076/anec. Scholar
  17. Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 1201–1209. doi: 10.1093/cercor/bhm155.CrossRefPubMedGoogle Scholar
  18. Downing, P. E., Bray, D., Rogers, J., & Childs, C. (2004). Bodies capture attention when nothing is expected. Cognition, 93(1), 27–38. doi: 10.1016/j.cognition.2003.10.010.CrossRefGoogle Scholar
  19. Driscoll, I., Hamilton, D. A., Petropoulos, H., Yeo, R. A., Brooks, W. M., Baumgartner, R. N., & Sutherland, R. J. (2003). The aging hippocampus: cognitive, biochemical and structural findings. Cerebral Cortex, 13(12), 1344–1351. doi: 10.1093/cercor/bhg081.CrossRefPubMedGoogle Scholar
  20. Dulaney, C. L., & Rogers, W. A. (1994). Mechanisms underlying reduction in Stroop interference with practice for young and old adults. Journal of Experimental Psychology. Learning, Memory, and Cognition, 20(2), 470–484. doi: 10.1037/0278-7393.20.2.470.CrossRefPubMedGoogle Scholar
  21. Dumas, J. A., & Hartman, M. (2003). Adult age differences in temporal and item memory. Psychology and Aging, 18(3), 573–586. doi: 10.1037/0882-7974.18.3.573.CrossRefPubMedGoogle Scholar
  22. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. doi: 10.1037/0033-295X.96.3.433.CrossRefPubMedGoogle Scholar
  23. Eichenbaum, H., & Cohen, N. J. (2014). Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron, 83(4), 764–770. doi: 10.1016/j.neuron.2014.07.032.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fabiani, M., & Friedman, D. (1997). Dissociations between memory for temporal order and recognition memory in aging. Neuropsychologia, 35(2), 129–141. doi: 10.1016/S0028-3932(96)00073-5.CrossRefPubMedGoogle Scholar
  25. Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440, 680–683. doi: 10.1038/nature04587.CrossRefPubMedGoogle Scholar
  26. Gazzaley, A., Cooney, J. W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 1298–1300. doi: 10.1038/nn1543.CrossRefPubMedGoogle Scholar
  27. Gazzaley, A., Sheridan, M. A., Cooney, J. W., & D’Esposito, M. (2007). Age-related deficits in component processes of working memory. Neuropsychology, 21(5), 532–539. doi: 10.1037/0894-4105.21.5.532.CrossRefPubMedGoogle Scholar
  28. Harris, M. A., Wiener, J. M., & Wolbers, T. (2012). Aging specifically impairs switching to an allocentric navigational strategy. Frontiers in Aging Neuroscience, 4(29), 1–9. doi: 10.3389/fnagi.2012.00029.Google Scholar
  29. Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron, 37(5), 877–888. doi: 10.1016/S0896-6273(03)00095-3.CrossRefPubMedGoogle Scholar
  30. Hasher, L., & Zacks, R. (1988). Working memory, comprehension and aging: A review and a new view. In G. K. Bower (Ed.), The psychology of learning and motivation (pp. 192–225). New York, NY: Academic Press. doi: 10.1016/S0079-7421(08)60041-9.
  31. Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioural Brain Research, 209(1), 49–58. doi: 10.1016/j.bbr.2010.01.012.CrossRefPubMedGoogle Scholar
  32. Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30, 425–447. doi: 10.1016/S0160-2896(02)00116-2.CrossRefGoogle Scholar
  33. Hommel, B., Li, K. Z. H., & Li, S.-C. (2004). Visual search across the life span. Developmental Psychology, 40(4), 545–558. doi: 10.1037/0012-1649.40.4.545.CrossRefPubMedGoogle Scholar
  34. Iaria, G., Palermo, L., Committeri, G., & Barton, J. J. S. (2009). Age differences in the formation and use of cognitive maps. Behavioural Brain Research, 196(2), 187–191. doi: 10.1016/j.bbr.2008.08.040.CrossRefPubMedGoogle Scholar
  35. Isingrini, M., Perrotin, A., Souchay, C., Sossin, W. S., Lacaille, J.-C., Castellucci, V. F., & Belleville, S. (2008). Aging, metamemory regulation and executive functioning. Progress in Brain Research, 169, 377–392. doi: 10.1016/S0079-6123(07)00024-6.CrossRefPubMedGoogle Scholar
  36. Jensen, O., & Lisman, J. E. (2005). Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in Neurosciences, 28(2), 67–72. doi: 10.1016/j.tins.2004.12.001.CrossRefPubMedGoogle Scholar
  37. Konishi, K., Etchamendy, N., Roy, S., Marighetto, A., Rajah, N., & Bohbot, V. D. (2013). Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus, 23(11), 1005–1014. doi: 10.1002/hipo.22181.CrossRefPubMedGoogle Scholar
  38. Kramer, A. F., Hahn, S., & Gopher, D. (1999). Task coordination and aging: Explorations of executive control processes in the task switching paradigm. Acta Psychologica, 101(2–3), 339–378. doi: 10.1016/S0001-6918(99)00011-6.CrossRefPubMedGoogle Scholar
  39. Lambrey, S., Doeller, C., Berthoz, A., & Burgess, N. (2012). Imagining being somewhere else: Neural basis of changing perspective in space. Cerebral Cortex, 22(1), 166–174. doi: 10.1093/cercor/bhr101.CrossRefPubMedGoogle Scholar
  40. Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 451–468. doi: 10.1037/0096-1523.21.3.451 PubMedGoogle Scholar
  41. Lavie, N. (2010). Attention, distraction, and cognitive control under load. Current Directions in Psychological Science, 19(3), 143–148. doi: 10.1177/0963721410370295.CrossRefGoogle Scholar
  42. Lavie, N., & De Fockert, J. (2005). The role of working memory in attentional capture. Psychonomic Bulletin & Review, 12(4), 669–674. doi: 10.3758/BF03196756.CrossRefGoogle Scholar
  43. Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133(3), 339–354. doi: 10.1037/0096-3445.133.3.339.CrossRefGoogle Scholar
  44. Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. A. (1993). Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology: General, 122(1), 73–91. doi: 10.1037/0096-3445.122.1.73.CrossRefGoogle Scholar
  45. Lustig, C., Hasher, L., & Tonev, S. T. (2006). Distraction as a determinant of processing speed. Psychonomic Bulletin & Review, 13(4), 619–625. doi: 10.3758/BF03193972.CrossRefGoogle Scholar
  46. Madden, D. J., Whiting, W. L., & Huettel, S. A. (2010). Age-related changes in neural activity during visual perception and attention. In R. Cabeza, L. Nyberg, & D. Park (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 157–185). New York: Oxford University Press.Google Scholar
  47. Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S. J., Frith, C. D., & O’Keefe, J. (1998). Knowing where and getting there: A human navigation network. Science, 280(5365), 921–924. doi: 10.1126/science.280.5365.921.CrossRefPubMedGoogle Scholar
  48. Maylor, E. A., & Lavie, N. (1998). The influence of perceptual load on age differences in selective attention. Psychology and Aging, 13(4), 563–574. doi: 10.1037/0882-7974.13.4.563.CrossRefPubMedGoogle Scholar
  49. McCarley, J. S., Yamani, Y., Kramer, A. F., & Mounts, J. R. W. (2012). Age, clutter, and competitive selection. Psychology and Aging, 27(3), 616–626. doi: 10.1037/a0026705.CrossRefPubMedGoogle Scholar
  50. McPhee, L. C., Scialfa, C. T., Dennis, W. M., Ho, G., & Caird, J. K. (2004). Age differences in visual search for traffic signs during a simulated conversation. Human Factors, 46(4), 674–685. doi: 10.1518/hfes.46.4.674.56817.CrossRefPubMedGoogle Scholar
  51. Merriman, N. A. (2015). Assessing cognitive factors and individual differences that modulate spatial navigation ability in older adults [dissertation]. Trinity College, the University of Dublin.Google Scholar
  52. Moffat, S. D. (2009). Aging and spatial navigation: What do we know and where do we go? Neuropsychology Review, 19(4), 478–489. doi: 10.1007/s11065-009-9120-3.CrossRefPubMedGoogle Scholar
  53. Moffat, S. D., Elkins, W., & Resnick, S. M. (2006). Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiology of Aging, 27(7), 965–972. doi: 10.1016/j.neurobiolaging.2005.05.011.CrossRefPubMedGoogle Scholar
  54. Moffat, S. D., Zonderman, A. B., & Resnick, S. M. (2001). Age differences in spatial memory in a virtual environment navigation task. Neurobiology of Aging, 22(5), 787–796. doi: 10.1016/S0197-4580(01)00251-2.CrossRefPubMedGoogle Scholar
  55. Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. doi: 10.1111/j.1532-5415.2005.53221.x.CrossRefPubMedGoogle Scholar
  56. Norman, J. F., Crabtree, C. E., Clayton, A. M., & Norman, H. F. (2005). The perception of distances and spatial relationships in natural outdoor environments. Perception, 34(11), 1315–1324. doi: 10.1068/p5304.CrossRefPubMedGoogle Scholar
  57. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press.Google Scholar
  58. Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196. doi: 10.1146/annurev.psych.59.103006.093656.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pilz, K. S., Bennett, P. J., & Sekuler, A. B. (2010). Effects of aging on biological motion discrimination. Vision Research, 50(2), 211–219. doi: 10.1016/j.visres.2009.11.014.CrossRefPubMedGoogle Scholar
  60. Postle, B. R., Desposito, M., & Corkin, S. (2005). Effects of verbal and nonverbal interference on spatial and object visual working memory. Memory & Cognition, 33(2), 203–212. doi: 10.3758/BF03195309.CrossRefGoogle Scholar
  61. Pratt, J., Radulescu, P. V., Guo, R. M., & Abrams, R. A. (2010). It’s alive! animate motion captures visual attention. Psychological Science, 21(11), 1724–1730. doi: 10.1177/0956797610387440.CrossRefPubMedGoogle Scholar
  62. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(November), 1676–1689. doi: 10.1093/cercor/bhi044.CrossRefPubMedGoogle Scholar
  63. Repovš, G., & Baddeley, A. (2006). The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience, 139(1), 5–21. doi: 10.1016/j.neuroscience.2005.12.061.CrossRefPubMedGoogle Scholar
  64. Reuter-Lorenz, P. A., & Sylvester, C. Y. C. (2010). The cognitive neuroscience of working memory and aging. In R. Cabeza, L. Nyberg, & D. Park (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 186–217). New York, NY: Oxford University Press.Google Scholar
  65. Rich, E. L., & Shapiro, M. (2009). Rat prefrontal cortical neurons selectively code strategy switches. The Journal of Neuroscience, 29(22), 7208–7219. doi: 10.1523/jneurosci.6068-08.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rodgers, M. K., Sindone, J. A., III, & Moffat, S. D. (2012). Effects of age on navigation strategy. Neurobiology of Aging, 33(1), 202e15–e22. doi: 10.1016/j.neurobiolaging.2010.07.021.CrossRefGoogle Scholar
  67. Rosenbaum, R. S., Winocur, G., Binns, M. A., & Moscovitch, M. (2012). Remote spatial memory in aging: All is not lost. Frontiers in Aging Neuroscience, 4(25), 1–10. doi: 10.3389/fnagi.2012.00025.Google Scholar
  68. Roudaia, E., Bennett, P. J., Sekuler, A. B., & Pilz, K. S. (2009). Spatiotemporal properties of apparent-motion perception in aging. Journal of Vision, 9(8), 695. doi: 10.1167/10.14.5.Introduction.CrossRefGoogle Scholar
  69. Salthouse, T. A., Babcock, R. L., & Shaw, R. J. (1991). Effects of adult age on structural and operational capacities in working memory. Psychology and Aging, 6(1), 118–127. doi: 10.1037/0882-7974.6.1.118.CrossRefPubMedGoogle Scholar
  70. Schaefer, S., Schellenbach, M., Lindenberger, U., & Woollacott, M. (2015). Walking in high-risk settings: Do older adults still prioritize gait when distracted by a cognitive task? Experimental Brain Research, 233(1), 79–88. doi: 10.1007/s00221-014-4093-8.CrossRefPubMedGoogle Scholar
  71. Sholl, M. J., Kenny, R. J., & DellaPorta, K. A. (2006). Allocentric-heading recall and its relation to self-reported sense-of-direction. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(3), 516–533. doi: 10.1037/0278-7393.32.3.516.CrossRefPubMedGoogle Scholar
  72. Siegel, J. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Advances in Child Development and Behavior, 10, 9–55. doi: 10.1016/S0065-2407(08)60007-5.CrossRefPubMedGoogle Scholar
  73. Spiers, H. J. (2008). Keeping the goal in mind: Prefrontal contributions to spatial navigation. Neuropsychologia, 46(7), 2106–2108. doi: 10.1016/j.neuropsychologia.2008.01.028.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Spiers, H. J., & Barry, C. (2015). Neural systems supporting navigation. Current Opinion in Behavioral Sciences, 1, 47–55. doi: 10.1016/j.cobeha.2014.08.005.CrossRefGoogle Scholar
  75. Taillade, M., Sauzéon, H., Arvind Pala, P., Déjos, M., Larrue, F., Gross, C., & N’Kaoua, B. (2013a). Age-related wayfinding differences in real large-scale environments: Detrimental motor control effects during spatial learning are mediated by executive decline? PLoS ONE, 8(7), e67193. doi: 10.1371/journal.pone.0067193.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Taillade, M., Sauzéon, H., Déjos, M., Arvind Pala, P., Larrue, F., Wallet, G., & N’Kaoua, B. (2013b). Executive and memory correlates of age-related differences in wayfinding performances using a virtual reality application. Aging, Neuropsychology and Cognition, 20(3), 298–319. doi: 10.1080/13825585.2012.706247.CrossRefPubMedGoogle Scholar
  77. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208. doi: 10.1037/h0061626.CrossRefPubMedGoogle Scholar
  78. Trick, L. M., Toxopeus, R., & Wilson, D. (2010). The effects of visibility conditions, traffic density, and navigational challenge on speed compensation and driving performance in older adults. Accident Analysis and Prevention, 42(6), 1661–1671. doi: 10.1016/j.aap.2010.04.005.CrossRefPubMedGoogle Scholar
  79. Vakil, E., Weise, M., & Shmuel, E. (1997). Direct and indirect memory measures of temporal order: Younger versus older adults. The International Journal of Aging & Human Development, 45(3), 195–206. doi: 10.2190/N54R-9Q1M-27F3-GTRY.CrossRefGoogle Scholar
  80. van Asselen, M., Fritschy, E., & Postma, A. (2006). The influence of intentional and incidental learning on acquiring spatial knowledge during navigation. Psychological Research, 70(2), 151–156. doi: 10.1007/s00426-004-0199-0.CrossRefPubMedGoogle Scholar
  81. Vogeley, K., & Fink, G. R. (2003). Neural correlates of the first-person-perspective. Trends in Cognitive Sciences, 7(1), 38–42. doi: 10.1016/S1364-6613(02)00003-7.CrossRefPubMedGoogle Scholar
  82. Warren, W. H., Blackwell, A. W., & Morris, M. W. (1989). Age differences in perceiving the direction of self-motion from optical flow. Journal of Gerontology: Psychological Sciences, 44(5), P147–P153.CrossRefGoogle Scholar
  83. Wegman, J., Fonteijn, H. M., van Ekert, J., Tyborowska, A., Jansen, C., & Janzen, G. (2014). Gray and white matter correlates of navigational ability in humans. Human Brain Mapping, 35, 2561–2572. doi: 10.1002/hbm.22349.CrossRefPubMedGoogle Scholar
  84. Wiener, J. M., Kmecova, H., & de Condappa, O. (2012a). Route repetition and route retracing: Effects of cognitive aging. Frontiers in Aging Neuroscience, 4(7), 1–7. doi: 10.3389/fnagi.2012.00007.Google Scholar
  85. Wiener, J. M., Hölscher, C., Büchner, S., & Konieczny, L. (2012b). Gaze behaviour during space perception and spatial decision making. Psychological Research, 76(6), 713–729. doi: 10.1007/s00426-011-0397-5.CrossRefPubMedGoogle Scholar
  86. Wiener, J. M., de Condappa, O., Harris, M. A., & Wolbers, T. (2013). Maladaptive bias for extrahippocampal navigation strategies in aging humans. The Journal of Neuroscience, 33(14), 6012–6017. doi: 10.1523/jneurosci.0717-12.2013.CrossRefPubMedGoogle Scholar
  87. Wolbers, T., & Büchel, C. (2005). Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. The Journal of Neuroscience, 25(13), 3333–3340. doi: 10.1523/jneurosci.4705-04.2005.CrossRefPubMedGoogle Scholar
  88. Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138–146. doi: 10.1016/j.tics.2010.01.001.CrossRefPubMedGoogle Scholar
  89. Wolbers, T., Weiller, C., & Büchel, C. (2004). Neural foundations of emerging route knowledge in complex spatial environments. Cognitive Brain Research, 21(3), 401–411. doi: 10.1016/j.cogbrainres.2004.06.013.CrossRefPubMedGoogle Scholar
  90. Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 95–107. doi: 10.1037/0096-1523.20.1.95.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Niamh A. Merriman
    • 1
  • Jan Ondřej
    • 2
  • Alicia Rybicki
    • 1
  • Eugenie Roudaia
    • 1
  • Carol O’Sullivan
    • 2
  • Fiona N. Newell
    • 1
    Email author
  1. 1.School of Psychology and Institute of Neuroscience, Lloyd BuildingTrinity College DublinDublin 2Ireland
  2. 2.Graphics, Vision and Visualisation Group, School of Computer Science and StatisticsTrinity College DublinDublin 2Ireland

Personalised recommendations