Advertisement

Psychological Research

, Volume 81, Issue 4, pp 863–877 | Cite as

Evidence for a global oculomotor program in reading

  • Noor Al-ZanoonEmail author
  • Michael Dambacher
  • Victor Kuperman
Original Article

Abstract

Recent corpus studies of eye-movements in reading revealed a substantial increase in saccade amplitudes and fixation durations as the eyes move over the first words of a sentence. This start-up effect suggests a global oculomotor program, which operates on the level of an entire line, in addition to the well-established local programs operating within the visual span. The present study investigates the nature of this global program experimentally and examines whether the start-up effect is predicated on generic visual or specific linguistic characteristics and whether it is mainly reflected in saccade amplitudes, fixation durations or both measures. Eye movements were recorded while 38 participants read (a) normal sentences, (b) sequences of randomly shuffled words and (c) sequences of z-strings. The stimuli were, therefore, similar in their visual features, but varied in the amount of syntactic and lexical information. Further, the stimuli were composed of words or strings that either varied naturally in length (Nonequal condition) or were all restricted to a specific length within a sentence (Equal). The latter condition constrained the variability of saccades and served to dissociate effects of word position in line on saccade amplitudes and fixation durations. A robust start-up effect emerged in saccade amplitudes in all Nonequal stimuli, and—in an attenuated form—in Equal sentences. A start-up effect in single fixation durations was observed in Nonequal and Equal normal sentences, but not in z-strings. These findings support the notion of a global oculomotor program in reading particularly for the spatial characteristics of motor planning, which rely on visual rather than linguistic information.

Keywords

Word Length Fixation Duration Saccade Amplitude Saccade Target Segmented Regression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with ethical standards

Funding

This work was supported by the funding from Natural Sciences and Engineering Research Council or Canada (NSERC) Discovery Grant 402395-2012, the Early Research Award from the Ontario Ministry of Research and Innovation, the National Institutes of Health NIH R01 HD 073288 (PI Julie A. Van Dyke), and the Canada Research Chair (Tier 2) award to Victor Kuperman. This work was also completed by Noor Al-Zanoon as an undergraduate thesis in the Cognitive Science of Language program at McMaster University (Hamilton, Ontario, Canada).

Conflict of interest

All authors declare that there is no conflict of interest.

Ethics

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (McMaster Research Ethics Board, protocol 2011 165).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

426_2016_786_MOESM1_ESM.docx (54 kb)
Supplementary material 1 (DOCX 53 kb)

References

  1. Balogh, J., Zurif, E., Prather, P., Swinney, D., & Finkel, L. (1998). Gap-filling and end-of-sentence effects in real-time language processing: implications for modeling sentence comprehension in aphasia. Brain and Language, 182(61), 169–182.CrossRefGoogle Scholar
  2. Balota, D. A., Pollatsek, A., & Rayner, K. (1985). The interaction of contextual constraints and parafoveal visual information in reading. Cognitive Psychology, 17(3), 364–390.CrossRefPubMedGoogle Scholar
  3. Balota, D. A., & Rayner, K. (1983). Parafoveal visual information and semantic contextual constraints. Journal of Experimental Psychology: Human Perception and Performance, 9(5), 726–738. doi: 10.1037/0096-1523.9.5.726.PubMedGoogle Scholar
  4. Corbic, D., Glover, L., & Radach, R. (2007). The Landoldt-C string scanning task as a proxy for visuomotor processing in reading: A pilot study. In Poster session presented at the 14th European Conference on Eye Movements.Google Scholar
  5. Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on word perception and eye movements during reading. Journal of Verbal Learning and Verbal Behavior, 20(6), 641–655. doi: 10.1016/S0022-5371(81)90220-6.CrossRefGoogle Scholar
  6. Engbert, R., & Kliegl, R. (2001). Mathematical models of eye movements in reading: A possible role for autonomous saccades. Biological Cybernetics, 85(2), 77–87. doi: 10.1007/PL00008001.CrossRefPubMedGoogle Scholar
  7. Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). SWIFT: A dynamical model of saccade generation during reading. Psychological Review, 112(4), 777–813. doi: 10.1037/0033-295X.112.4.777.CrossRefPubMedGoogle Scholar
  8. Enomoto, Y., Kadono, H., Suzuki, Y., Chiba, T., & Koyama, K. (2008). Biomechanical analysis of the medalists in the 10,000 metres at the 2007 World Championships in Athletics. New Studies in Athletics, 3, 61–66.Google Scholar
  9. Hill, R. L., & Murray, W. S. (2000). Commas and spaces: effects of punctuation on eye movements and sentence parsing. In A. Kennedy, R. Radach, D. Heller, & J. Pynte (Eds.), Reading as a Perceptual Process (pp. 565–589). Amsterdam, Netherlands: Elsevier. doi: 10.1016/B978-008043642-5/50027-9.
  10. Hirotani, M., Frazier, L., & Rayner, K. (2006). Punctuation and intonation effects on clause and sentence wrap-up: Evidence from eye movements. Journal of Memory and Language, 54, 425–443. doi: 10.1016/j.jml.2005.12.001.CrossRefGoogle Scholar
  11. Huestegge, L., & Bocianski, D. (2010). Effects of syntactic context on eye movements during reading. Advances in Cognitive Psychology, 6, 79–87.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hunter, J. P., Marshall, R. N., & McNair, P. J. (2004). Interaction of step length and step rate during sprint running. Medicine and Science in Sports and Exercise, 36(2), 261–271. doi: 10.1249/01.MSS.0000113664.15777.53.CrossRefPubMedGoogle Scholar
  13. Hyönä, J., Lorch, R. F., & Kaakinen, J. K. (2002). Individual differences in reading to summarize expository text: Evidence from eye fixation patterns. Journal of Educational Psychology, 94(1), 44–55. doi: 10.1037/0022-0663.94.1.44.CrossRefGoogle Scholar
  14. Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329–354.CrossRefPubMedGoogle Scholar
  15. Kaakinen, J. K., & Hyönä, J. (2008). Perspective-driven text comprehension. Applied Cognitive Psychology, 22(3), 319–334. doi: 10.1002/acp.1412.CrossRefGoogle Scholar
  16. Kaakinen, J. K., & Hyönä, J. (2010). Task effects on eye movements during reading. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36(6), 1561.CrossRefPubMedGoogle Scholar
  17. Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727. doi: 10.1016/S0959-4388(99)00028-8.CrossRefPubMedGoogle Scholar
  18. Kennedy, A., & Pynte, J. (2005). Parafoveal-on-foveal effects in normal reading. Vision Research, 45(2), 153–168. doi: 10.1016/j.visres.2004.07.037.CrossRefPubMedGoogle Scholar
  19. Kunz, H., & Kaufmann, D. A. (1981). Biomechanical analysis of sprinting: decathletes versus champions. British Journal of Sports Medicine, 15(3), 177–181. doi: 10.1136/bjsm.15.3.177.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kuperman, V., Dambacher, M., Nuthmann, A., & Kliegl, R. (2010). The effect of word position on eye-movements in sentence and paragraph reading. Quarterly Journal of Experimental Psychology, 63(9), 1838–1857. doi: 10.1080/17470211003602412.CrossRefGoogle Scholar
  21. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2015). lmerTest: Tests in Linear Mixed Effects Models. Retrieved from http://cran.r-project.org/package=lmerTest.
  22. Lackner, J. R., & Dizio, P. (1994). Rapid adaptation to Coriolis force perturbations of arm trajectory. Journal of Neurophysiology, 72(1), 299–313.PubMedGoogle Scholar
  23. Lackner, J. R., & Dizio, P. (1998). Gravitoinertial Force Background Level Affects Adaptation to Coriolis Force Perturbations of Reaching Movements. Journal of Neurophysiology, 80, 546–553.PubMedGoogle Scholar
  24. Liversedge, S. P., Drieghe, D., Li, X., Yan, G., Bai, X., & Hyönä, J. (2016). Universality in eye movements and reading: a trilingual investigation. Cognition, 147(3), 1–20. doi: 10.1016/j.cognition.2015.10.013.CrossRefPubMedGoogle Scholar
  25. Mann, R., Kotmel, J., Herman, J., Johnson, B., & Schultz, C. (1984). Kinematic trends in elite sprinters. Proceedings of the International Symposium of Biomechanics in Sports (pp. 17–33). Del Mar, California: Academic Publishers.Google Scholar
  26. McConkie, G. W., Kerr, P. W., Reddix, M. D., & Zola, D. (1988). Eye movement control during reading: I. The location of initial eye fixations on words. Vision Research, 28(10), 1107–1118.CrossRefPubMedGoogle Scholar
  27. Morris, R. K., Rayner, K., & Pollatsek, A. (1990). Eye movement guidance in reading: The role of parafoveal letter and space information. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 268–281. doi: 10.1037/0096-1523.16.2.268.PubMedGoogle Scholar
  28. Morrison, R. E. (1984). Manipulation of stimulus onset delay in reading: Evidence for parallel programming of saccades. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 667–682. doi: 10.1037/0096-1523.10.5.667.PubMedGoogle Scholar
  29. Muggeo, V. M. R. (2003). Estimating regression models with unknown break-points. Statistics in Medicine, 22(19), 3055–3071. doi: 10.1002/sim.1545.CrossRefPubMedGoogle Scholar
  30. Muggeo, V. M. R. (2008). Segmented: An R package to fit regression models with broken-line relationships. R News, 8, 20–25.Google Scholar
  31. Pynte, J., & Kennedy, A. (2006). An influence over eye movements in reading exerted from beyond the level of the word: evidence from reading English and French. Vision Research, 46(22), 3786–3801. doi: 10.1016/j.visres.2006.07.004.CrossRefPubMedGoogle Scholar
  32. R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/.
  33. Radach, R., Huestegge, L., & Reilly, R. (2008). The role of global top-down factors in local eye-movement control in reading. Psychological Research, 72(6), 675–688. doi: 10.1007/s00426-008-0173-3.CrossRefPubMedGoogle Scholar
  34. Rayner, K. (1979). Eye guidance in reading: fixation locations within words. Perception, 8(1), 21–30.CrossRefPubMedGoogle Scholar
  35. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/353867.
  36. Rayner, K., Binder, K. S., Ashby, J., & Pollatsek, A. (2001). Eye movement control in reading: word predictability has little influence on initial landing positions in words. Vision Research, 41(7), 943–954.CrossRefPubMedGoogle Scholar
  37. Rayner, K., Chace, K. H., Slattery, T. J., & Ashby, J. (2006). Eye movements as reflections of comprehension processes in reading. Scientific Studies of Reading, 10(3), 241–255. doi: 10.1207/s1532799xssr1003_3.CrossRefGoogle Scholar
  38. Rayner, K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory and Cognition, 14(3), 191–201.CrossRefPubMedGoogle Scholar
  39. Rayner, K., & Fischer, M. H. (1996). Mindless reading revisited: Eye movements during reading and scanning are different. Perception and Psychophysics, 58, 734–747.CrossRefPubMedGoogle Scholar
  40. Rayner, K., Kambe, G., & Duffy, S. A. (2000). The effect of clause wrap-up on eye movements during reading. The Quarterly Journal of Experimental Psychology, 53(4), 1061–1080. doi: 10.1080/713755934.CrossRefPubMedGoogle Scholar
  41. Rayner, K., & Raney, G. E. (1996). Eye movement control in reading and visual search: Effects of word frequency. Psychonomic Bulletin & Review, 3(2), 245–248. doi: 10.3758/BF03212426.CrossRefGoogle Scholar
  42. Rayner, K., Sereno, S. C., Morris, R. K., Schmauder, A. R., & Clifton, C. (1989). Eye movements and on-line language comprehension processes. Language and Cognitive Processes, 4(3–4), SI21–SI49. doi: 10.1080/01690968908406362.
  43. Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125–157.CrossRefPubMedGoogle Scholar
  44. Reichle, E. D., Pollatsek, A., & Rayner, K. (2006). E-Z Reader: A cognitive-control, serial-attention model of eye-movement behavior during reading. Cognitive Systems Research, 7(1), 4–22. doi: 10.1016/j.cogsys.2005.07.002.CrossRefGoogle Scholar
  45. Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E-Z reader model of eye-movement control in reading: Comparisons to other models. The Behavioral and Brain Sciences, 26(4), 445–476. discussion 477–526.CrossRefPubMedGoogle Scholar
  46. Reichle, E. D., Warren, T., & McConnell, K. (2009). Using E-Z Reader to model the effects of higher level language processing on eye movements during reading. Psychonomic Bulletin & Review, 16(1), 1–21. doi: 10.3758/PBR.16.1.1.CrossRefGoogle Scholar
  47. Schad, D. J., & Engbert, R. (2012). The zoom lens of attention: Simulating shuffled versus normal text reading using the SWIFT model. Visual Cognition, 20(4–5), 391–421. doi: 10.1080/13506285.2012.670143.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schad, D. J., Nuthmann, A., & Engbert, R. (2010). Eye movements during reading of randomly shuffled text. Vision Research, 50(23), 2600–2616. doi: 10.1016/j.visres.2010.08.005.CrossRefPubMedGoogle Scholar
  49. Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225–260. doi: 10.1037/h0076770.CrossRefGoogle Scholar
  50. Schmidt, R. A. (2003). Motor schema theory after 27 years: Reflections and implications for a new theory. Research Quarterly for Exercise and Sport, 74(4), 366–375. doi: 10.1080/02701367.2003.10609106.CrossRefPubMedGoogle Scholar
  51. Schmidt, R. A., & Lee, T. (2013). Motor Learning and performance, 5E with web study guide: From principles to application. Champaign: Human Kinetics.Google Scholar
  52. Shadmehr, R., & Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience, 14(5 Pt 2), 3208–3224.PubMedGoogle Scholar
  53. Sherwood, D. E., & Lee, T. D. (2003). Schema theory: critical review and implications for the role of cognition in a new theory of motor learning. Research Quarterly for Exercise and Sport, 74(4), 376–382. doi: 10.1080/02701367.2003.10609107.CrossRefPubMedGoogle Scholar
  54. Underwood, G., Clews, S., & Everatt, J. (1990). How do readers know where to look next? Local information distributions influence eye fixations. The Quarterly Journal of Experimental Psychology, 42(1), 39–65. doi: 10.1080/14640749008401207.CrossRefPubMedGoogle Scholar
  55. Vitu, F., O’Regan, J. K., Inhoff, A. W., & Topolski, R. (1995). Mindless reading: Eye-movement characteristics are similar in scanning letter strings and reading texts. Perception and Psychophysics, 57(3), 352–364.CrossRefPubMedGoogle Scholar
  56. Vitu, F., O’Regan, J. K., & Mittau, M. (1990). Optimal landing position in reading isolated words and continuous text. Perception and Psychophysics, 47(6), 583–600. doi: 10.3758/BF03203111.CrossRefPubMedGoogle Scholar
  57. von der Malsburg, T., Kliegl, R., & Vasishth, S. (2015). Determinants of scanpath regularity in reading. Cognitive Science, 39(7), 1675–1703. doi: 10.1111/cogs.12208.CrossRefPubMedGoogle Scholar
  58. von der Malsburg, T., & Vasishth, S. (2011). What is the scanpath signature of syntactic reanalysis? Journal of Memory and Language, 65(2), 109–127. doi: 10.1016/j.jml.2011.02.004.CrossRefGoogle Scholar
  59. Warren, T., White, S. J., & Reichle, E. D. (2009). Investigating the causes of wrap-up effects: Evidence from eye movements and E-Z Reader. Cognition, 111(1), 132–137. doi: 10.1016/j.cognition.2008.12.011.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Williams, C. C., & Pollatsek, A. (2007). Searching for an O in an array of Cs: eye movements track moment-to-moment processing in visual search. Perception and Psychophysics, 69(3), 372–381.CrossRefPubMedGoogle Scholar
  61. Wotschack, C. (2009). Eye movements in reading strategies: How reading strategies modulate effects of distributed processing and oculomotor control. Universität Potsdam.Google Scholar
  62. Wotschack, C., & Kliegl, R. (2013). Reading strategy modulates parafoveal-on-foveal effects in sentence reading. Quarterly Journal of Experimental Psychology, 66, 548–562. doi: 10.1080/17470218.2011.625094.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Noor Al-Zanoon
    • 1
    Email author
  • Michael Dambacher
    • 2
  • Victor Kuperman
    • 3
  1. 1.Department of Health and Rehabilitation SciencesUniversity of Western OntarioLondonCanada
  2. 2.University of LeicesterLeicesterUK
  3. 3.McMaster UniversityHamiltonCanada

Personalised recommendations