Psychological Research

, Volume 81, Issue 4, pp 840–849 | Cite as

Impact of optokinetic stimulation on mental arithmetic

  • Nicolas Masson
  • Mauro Pesenti
  • Valérie Dormal
Original Article


Solving arithmetic problems has been shown to induce shifts of spatial attention, subtraction problems orienting attention to the left side, and addition problems to the right side of space. At the neurofunctional level, the activations elicited by the solving of arithmetical problems resemble those elicited by horizontal eye movements. Whether overt orientation of attention (i.e., eye movements) can be linked to the solving procedure is, however, still under debate. In the present study, we used optokinetic stimulation (OKS) to trigger automatic eye movements to orient participants’ overt attention to the right or to the left of their visual field while they were solving addition or subtraction problems. The results show that, in comparison to leftward OKS and a control condition, rightward OKS facilitates the solving of addition problems that necessitate a carrying procedure. Subtraction solving was unaffected by leftward or rightward OKS. These results converge with previous findings to show that attentional shifts are functionally related to mental arithmetic processing.


Spatial Attention Mental Arithmetic Arithmetic Problem Neglect Patient Subtraction Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Laurie Geers and Madeline Slÿpen for their help in data collection.


  1. Anelli, F., Lugli, L., Baroni, G., Borghi, A. M., & Nicoletti, R. (2014). Walking boosts your performance in making additions and subtractions. Frontiers in Psychology,. doi: 10.3389/fpsyg.2014.01459.PubMedPubMedCentralGoogle Scholar
  2. Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44, 75–106.CrossRefPubMedGoogle Scholar
  3. Berberovic, N., & Mattingley, J. B. (2003). Effects of prismatic adaptation on judgements of spatial extent in peripersonal and extrapersonal space. Neuropsychologia, 41(4), 493–503.CrossRefPubMedGoogle Scholar
  4. Binder, J., Marshall, R., Lazar, R., Benjamin, J., & Morh, J. P. (1992). Distinct syndromes of hemineglect. Archives of Neurology, 49(11), 1187–1194.CrossRefPubMedGoogle Scholar
  5. Bisiach, E., & Luzzatti, C. (1978). Unilateral neglect of representational space. Cortex, 14(1), 129–133.CrossRefPubMedGoogle Scholar
  6. Bisiach, E., Luzzatti, C., & Perani, D. (1979). Unilateral neglect, representational schema and consciousness. Brain, 102(3), 609–618.CrossRefPubMedGoogle Scholar
  7. Bonato, M., Priftis, K., Marenzi, R., & Zorzi, M. (2009). Normal and impaired reflexive orienting of attention after central nonpredictive cues. Journal of Cognitive Neuroscience, 21(4), 745–759.CrossRefPubMedGoogle Scholar
  8. Bowers, D., & Heilman, K. M. (1980). Pseudoneglect: Effects of hemispace on a tactile line bisection task. Neuropsychologia, 18(4), 491–498.CrossRefPubMedGoogle Scholar
  9. Brandt, S. A., & Stark, L. W. (1997). Spontaneous eye movements during visual imagery reflect the content of the visual scene. Journal of Cognitive Neuroscience, 9(1), 27–38.CrossRefPubMedGoogle Scholar
  10. Campbell, J. I. D. (2005). Handbook of mathematical cognition. New York: Psychology Press.Google Scholar
  11. Campbell, J. I. D. (2008). Subtraction by addition. Memory and Cognition, 36(6), 1094–1102.CrossRefPubMedGoogle Scholar
  12. Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2007). The middle house or the middle floor: bisecting horizontal and vertical mental number lines in neglect. Neuropsychologia, 45(13), 2989–3000. doi: 10.1016/j.neuropsychologia.2007.05.014.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Casarotti, M., Michielin, M., Zorzi, M., & Umiltà, C. (2007). Temporal order judgment reveals how number magnitude affects visuospatial attention. Cognition, 102, 101–117.CrossRefPubMedGoogle Scholar
  14. Colent, C., Pisella, L., Bernieri, C., Rode, G., & Rossetti, Y. (2000). Cognitive bias induced by visuo-motor adaptation to prisms: a simulation of unilateral neglect in normal individuals? NeuroReport, 11(9), 1899–1902.CrossRefPubMedGoogle Scholar
  15. de Vito, S., Buonocore, A., Bonnefon, J. F., & Della Sala, S. (2014). Eye movements disrupt spatial but not visual mental imagery. Cognitive Processing, 15(4), 543–549.CrossRefPubMedGoogle Scholar
  16. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 4, 1–42.Google Scholar
  17. Dormal, V., Schuller, A. M., Nihoul, J., Pesenti, M., & Andres, M. (2014). Causal role of spatial attention in arithmetic problem solving: Evidence from left unilateral neglect. Neuropsychologia, 60, 1–9. doi: 10.1016/j.neuropsychologia.2014.05.007.CrossRefPubMedGoogle Scholar
  18. Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes shifts of spatial attention. Nature Neuroscience, 6(6), 555–556.CrossRefPubMedGoogle Scholar
  19. Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51(2), 91–97.CrossRefPubMedGoogle Scholar
  20. Gallace, A., Auvray, M., & Spence, C. (2007). The modulation of haptic line bisection by a visual illusion and optokinetic stimulation. Perception, 36(7), 1003–1018. doi: 10.1068/p5457.CrossRefPubMedGoogle Scholar
  21. Geary, D. C., Frensch, P. A., & Wiley, J. G. (1993). Simple and complex mental subtraction: strategy choice and speed-of-processing differences in younger and older adults. Psychology and Aging, 8(2), 242.CrossRefPubMedGoogle Scholar
  22. Grade, S., Lefèvre, N., & Pesenti, M. (2013). Influence of gaze observation on random number generation. Experimental Psychology, 60, 122–130. doi: 10.1027/1618-3169/a000178.CrossRefPubMedGoogle Scholar
  23. Guariglia, C., Palermo, L., Piccardi, L., Iaria, G., & Incoccia, C. (2013). Neglecting the left side of a city square but not the left side of its clock: prevalence and characteristics of representational neglect. PLoS One, 8(7), e67390.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Halligan, P. W., Fink, G. R., Marshall, J. C., & Vallar, G. (2003). Spatial cognition: evidence from visual neglect. Trends in Cognitive Sciences, 7(3), 125–133.CrossRefPubMedGoogle Scholar
  25. Hartmann, M. (2015). Numbers in the eye of the beholder: What do eye movements reveal about numerical cognition? Cognitive Processing, 16(1), 245–248.CrossRefPubMedGoogle Scholar
  26. Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic: evidence from eye movements on blank screen. Frontiers in Psychology, 6, 12. doi: 10.3389/fpsyg.2015.00012.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hartmann, M., Mast., F. W., & Fischer, M. H. (2016). Counting is a spatial process: evidence from eye movements. Psychological Research, 80(3), 399–409. doi: 10.1007/s00426-015-0722-5.CrossRefPubMedGoogle Scholar
  28. Hebb, D. O. (1968). Concerning imagery. Psychological Review, 75(6), 466.CrossRefPubMedGoogle Scholar
  29. Hoeckner, S. H., Moeller, K., Zauner, H., Wood, G., Haider, C., Gabner, A., & Nuerk, H. C. (2008). Impairments of the mental line for two-digits numbers in neglect. Cortex, 44(4), 429–438.CrossRefPubMedGoogle Scholar
  30. Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448. doi: 10.1038/nrn1684.CrossRefPubMedGoogle Scholar
  31. Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93–110.CrossRefPubMedGoogle Scholar
  32. Johansson, R., Holsanova, J., & Holmqvist, K. (2006). Pictures and spoken descriptions elicit similar eye movements during mental imagery, both in light and in complete darkness. Cognitive Science, 30(6), 1053–1079.CrossRefPubMedGoogle Scholar
  33. Johansson, R., & Johansson, M. (2014). Look here, eye movements play a functional role in memory retrieval. Psychological Science, 25(1), 236–242.CrossRefPubMedGoogle Scholar
  34. Kerkhoff, G. (2003). Modulation and rehabilitation of spatial neglect by sensory stimulation. In C. Prablanc, D. Pélisson, & Y. Rossetti (Eds.), Neural control of space coding and action production (pp. 257–271). Amsterdam: Elsevier.CrossRefGoogle Scholar
  35. Kerkhoff, G., Keller, I., Ritter, V., & Marquardt, C. (2006). Repetitive optokinetic stimulation induces lasting recovery from visual neglect. Restorative Neurology and Neuroscience, 24(4), 357–370.PubMedGoogle Scholar
  36. Knops, A., Dehaene, S., Berteletti, I., & Zorzi, M. (2014). Can approximate mental calculation account for operational momentum in addition and subtraction? Quarterly Journal of Experimental Psychology, 67(8), 1541–1556.CrossRefGoogle Scholar
  37. Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009a). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324, 1583–1585.CrossRefPubMedGoogle Scholar
  38. Knops, A., Viarouge, A., & Dehaene, S. (2009b). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention, Perception, and Psychophysics, 71(4), 803–821.CrossRefGoogle Scholar
  39. Knops, A., Zitzmann, S., & McCrink, K. (2013). Examining the presence and determinants of operational momentum in childhood. Frontiers in Psychology, 4, 325. doi: 10.3389/fpsyg.2013.00325..CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kramer, P., Stoianov, I., Umiltà, C., & Zorzi, M. (2011). Interactions between perceptual and numerical space. Psychonomic Bulletin and Review, 18(4), 722–728. doi: 10.3758/s13423-011-0104-y.CrossRefGoogle Scholar
  41. Laeng, B., & Teodorescu, D. S. (2002). Eye scanpaths during visual imagery reenact those of perception of the same visual scene. Cognitive Science, 26(2), 207–231.CrossRefGoogle Scholar
  42. LeFevre, J. A., DeStefano, D., Penner-Wilger, M., & Daley, K. E. (2006). Selection of procedures in mental subtraction. Canadian Journal of Experimental Psychology, 60(3), 209.CrossRefPubMedGoogle Scholar
  43. Lindemann, O., & Tira, M. (2011). Operational momentum in numerosity production judgments of multi-digit number problems. Journal of Psychology, 219(1), 50–57.Google Scholar
  44. Loetscher, T., Bockisch, C. J., Nicholls, M. E., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20(6), R264–R265.CrossRefPubMedGoogle Scholar
  45. Loftus, A. M., Nicholls, M. E. R., Mattingley, J. B., & Bradshaw, J. L. (2008). Left to right: Representational biases for numbers and the effect of visuomotor adaptation. Cognition, 107(3), 1048–1058. doi: 10.1016/j.cognition.2007.09.007.CrossRefPubMedGoogle Scholar
  46. Lugli, L., Baroni, G., Anelli, F., Borghi, A. M., & Nicoletti, R. (2013). Counting is easier while experiencing a congruent motion. PLoS One, 8(5), e64500.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Marghetis, T., Nunez, R., & Bergen, B. (2014). Hand movements during exact arithmetic reveal systematic, dynamic spatial processing. The Quarterly Journal of Experimental Psychology, 67(8), 1579–1596.CrossRefPubMedGoogle Scholar
  48. Marshall, J. C., & Halligan, P. W. (1989). When right goes left: an investigation of line bisection in a case of visual neglect. Cortex, 25(3), 503–515.CrossRefPubMedGoogle Scholar
  49. Masson, N., & Pesenti, M. (2014). Attentional bias induced by solving simple and complex addition and subtraction problems. The Quarterly Journal of Experimental Psychology, 67(8), 1514–1526.CrossRefPubMedGoogle Scholar
  50. Masson, N., & Pesenti, M. (2016). Interference of lateralized distractors on arithmetic problem solving: a functional role for attention shifts in mental calculation. Psychological Research, 80(4), 640–651. doi: 10.1007/s00426-015-0668-7.CrossRefPubMedGoogle Scholar
  51. Masson, N., Pesenti, M., & Dormal, V. (2013). Spatial bias in symbolic and non-symbolic numerical comparison in neglect. Neuropsychologia, 51(10), 1925–1932. doi: 10.1016/j.neuropsychologia.2013.06.004.CrossRefPubMedGoogle Scholar
  52. Masson, N., Pesenti, M., & Dormal, V. (2015). Duration and numerical estimation in right brain-damaged patients with and without neglect: Lack of support for a mental time line. British Journal of Psychology. doi: 10.1111/bjop.12155.
  53. Mathieu, R., Gourjon, A., Couderc, A., Thevenot, C., & Prado, J. (2016). Running the number line: Rapid shifts of attention in single-digit arithmetic. Cognition, 146, 229–239.CrossRefPubMedGoogle Scholar
  54. Mattingley, J. B., Bradshaw, J. L., & Bradshaw, J. A. (1994). Horizontal visual motion modulates focal attention in left unilateral spatial neglect. Journal of Neurology, Neurosurgery and Psychiatry, 57(10), 1228–1235.CrossRefPubMedPubMedCentralGoogle Scholar
  55. McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: operational momentum in nonsymbolic arithmetic. Perception and Psychophysics, 69(8), 1324–1333.CrossRefPubMedGoogle Scholar
  56. McCrink, K., & Wynn, K. (2009). Operational momentum in large number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103(4), 400–408.CrossRefPubMedGoogle Scholar
  57. Michel, C., Pisella, L., Halligan, P. W., Luauté, J., Rode, G., Boisson, D., & Rossetti, Y. (2003). Simulating unilateral neglect in normals using prism adaptation: implications for theory. Neuropsychologia, 41(1), 25–39.CrossRefPubMedGoogle Scholar
  58. Myachykov, A., Ellis, R., Cangelosi, A., & Fischer, M. H. (2016). Ocular drift along the mental number line. Psychological Research, 80(3), 379–388. doi: 10.1007/s00426-015-0731-4.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nicholls, M. E., Bradshaw, J. L., & Mattingley, J. B. (1999). Free-viewing perceptual asymmetries for the judgement of brightness, numerosity and size. Neuropsychologia, 37(3), 307–314.CrossRefPubMedGoogle Scholar
  60. Ogden, J. A. (1985). Anterior-posterior interhemispheric differences in the loci of lesions producing visual hemineglect. Brain and Cognition, 4(1), 59–75.CrossRefPubMedGoogle Scholar
  61. Pizzamiglio, L., Frasca, R., Guariglia, C., Incoccia, C., & Antonucci, G. (1990). Effect of optokinetic stimulation in patients with visual neglect. Cortex, 26(4), 535–541.CrossRefPubMedGoogle Scholar
  62. Priftis, K., Pitteri, M., Meneghello, F., Umiltà, C., & Zorzi, M. (2012). Optokinetic stimulation modulates neglect for the number space: evidence from mental number interval bisection. Frontiers in Human Neuroscience, 6, 23. doi: 10.3389/fnhum.2012.00023.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ranzini, M., Lisi, M., Blini, E., Pitteri, M., Treccani, B., Priftis, K., & Zorzi, M. (2015). Larger, smaller, odd or even? Task-specific effects of optokinetic stimulation on the mental number space. Journal of Cognitive Psychology, 27(4), 459–470.CrossRefGoogle Scholar
  64. Ranzini, M., Lisi, M., & Zorzi, M. (2016). Voluntary eye movements direct attention on the mental number space. Psychological Research, 80(3), 389–398. doi: 10.1007/s00426-015-0741-2.CrossRefPubMedGoogle Scholar
  65. Rode, G., Rossetti, Y., & Boisson, D. (2001). Prism adaptation improves representational neglect. Neuropsychologia, 39(11), 1250–1254.CrossRefPubMedGoogle Scholar
  66. Ruiz Fernandez, S., Rahona, J. J., Hervas, G., Vazquez, C., & Ulrich, R. (2011). Number magnitude determine gaze direction. Cortex, 47, 617–620.CrossRefPubMedGoogle Scholar
  67. Salillas, E., Granà, A., Juncadella, M., Rico, I., & Semenza, C. (2009). Leftward motion restores number space in neglect. Cortex, 45(6), 730–737.CrossRefPubMedGoogle Scholar
  68. Salvato, G., Sedda, A., & Bottini, G. (2014). In search of the disappeared half of it: 35 years of studies on representational neglect. Neuropsychology, 28(5), 706.CrossRefPubMedGoogle Scholar
  69. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime user’s guide. Pittsburgh: Psychology Software Tools, Inc. doi: 10.1186/1756-0381-3-1.Google Scholar
  70. Stoianov, I., Kramer, P., Umiltà, C., & Zorzi, M. (2008). Visuospatial priming of the mental number line. Cognition, 106(2), 770–779. doi: 10.1016/j.cognition.2007.04.013.CrossRefGoogle Scholar
  71. Stone, S. P., Halligan, P. W., & Greenwood, R. J. (1993). The incidence of neglect phenomena and related disorders in patients with an acute right or left hemisphere stroke. Age and Ageing, 22(1), 46–52. doi: 10.1093/ageing/22.1.46.CrossRefPubMedGoogle Scholar
  72. Thimm, M., Fink, G. R., Küst, J., Karbe, H., Willmes, K., & Sturm, W. (2009). Recovery from hemineglect: differential neurobiological effects of optokinetic stimulation and alertness training. Cortex, 45(7), 850–862.CrossRefPubMedGoogle Scholar
  73. van Dijck, J.-P., Gevers, W., Lafosse, C., & Fias, W. (2012). The heterogeneous nature of number-space interactions. Frontiers in Human Neuroscience, 5, 182. doi: 10.3389/fnhum.2011.00182.PubMedPubMedCentralGoogle Scholar
  74. Vuilleumier, P., Ortigue, S., & Brugger, P. (2004). The number space and neglect. Cortex, 40(2), 399–410. doi: 10.1016/S0010-9452(08)70134-5.CrossRefPubMedGoogle Scholar
  75. Werner, K., & Raab, M. (2014). Moving your eyes to solution: Effects of movement on the perception of problem-solving task. The Quarterly Journal of Experimental Psychology, 67(8), 1571–1578.CrossRefPubMedGoogle Scholar
  76. Wiemers, M., Bekkering, H., & Lindemann, O. (2014). Spatial interferences in mental arithmetic: Evidence from the motion-arithmetic compatibility effect. The Quarterly Journal of Experimental Psychology, 67(8), 1557–1570.CrossRefPubMedGoogle Scholar
  77. Yu, X., Liu, J., Li, D., Liu, H., Cui, J., & Zhou, X. (2016). Dynamic mental number line in simple arithmetic. Psychological Research, 80(3), 410–421. doi: 10.1007/s00426-015-0730-5.CrossRefPubMedGoogle Scholar
  78. Zorzi, M., Bonato, M., Treccani, B., Scalambrin, G., Marenzi, R., & Priftis, K. (2012). Neglect impairs explicit processing of the mental number line. Frontiers in Human Neuroscience, 6, 125. doi: 10.3389/fnhum.2012.00125.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zorzi, M., Priftis, K., & Umiltà, C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417(6885), 138–139. doi: 10.1038/417138a.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut de Recherche en Sciences Psychologiques and Institute of NeuroscienceUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations