Psychological Research

, Volume 81, Issue 3, pp 611–628 | Cite as

Post-conflict slowing after incongruent stimuli: from general to conflict-specific

Original Article

Abstract

Encountering a cognitive conflict not only slows current performance, but it can also affect subsequent performance, in particular when the conflict is induced with bivalent stimuli (i.e., stimuli with relevant features for two different tasks) or with incongruent trials (i.e., stimuli with relevant features for two response alternatives). The post-conflict slowing following bivalent stimuli, called “bivalency effect”, affects all subsequent stimuli, irrespective of whether the subsequent stimuli share relevant features with the conflict stimuli. To date, it is unknown whether the conflict induced by incongruent stimuli results in a similar post-conflict slowing. To investigate this, we performed six experiments in which participants switched between two tasks. In one task, incongruent stimuli appeared occasionally; in the other task, stimuli shared no feature with the incongruent trials. The results showed an initial performance slowing that affected all tasks after incongruent trials. On further trials, however, the slowing only affected the task sharing features with the conflict stimuli. Therefore, the post-conflict slowing following incongruent stimuli is first general and then becomes conflict-specific across trials. These findings are discussed within current task switching and cognitive control accounts.

Notes

Acknowledgments

This work was supported by the Center for Cognition, Learning, and Memory, University of Bern, Switzerland. We thank Anne-Catherine Amstutz, Rahel Gfeller, Eva Gut, Tiffany Jacob, Melanie Künzli, Isabelle Marti, Seline Messmer, Sabrina Schmied, and Michèle Spichtig for testing the participants. We also thank Michel Druey for helpful comments on an earlier version.

References

  1. Akçay, Ç., & Hazeltine, E. (2011). Domain-specific conflict adaptation without feature repetitions. Psychonomic Bulletin & Review, 18(3), 505–511. doi:10.3758/s13423-011-0084-y.CrossRefGoogle Scholar
  2. Allport, A., & Wylie, G. (1999). Task-switching: Positive and negative priming of task-set. In G. W. Humphrey, J. Duncan, & A. Treisman (Eds.), Attention, space and action: Studies in cognitive neuroscience (pp. 273–296). New York: Oxford University Press.Google Scholar
  3. Allport, A., & Wylie, G. (2000). Task-switching, stimulus-response bindings, and negative priming. In S. Monsell & J. S. Driver (Eds.), Control of Cognitive Processes: Attention and Performance XVIII (pp. 35–70). Cambridge: MIT Press.Google Scholar
  4. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. doi:10.1037//0033-295X.108.3.624.CrossRefPubMedGoogle Scholar
  5. Braem, S., Abrahamse, E. L., Duthoo, W., & Notebaert, W. (2014). What determines the specificity of conflict adaptation? A review, critical analysis, and proposed synthesis. Frontiers in Psychology,. doi:10.3389/fpsyg.2014.01134.Google Scholar
  6. Braem, S., Verguts, T., Roggeman, C., & Notebaert, W. (2012). Reward modulates adaptations to conflict. Cognition, 125(2), 324–332. doi:10.1016/j.cognition.2012.07.015.CrossRefPubMedGoogle Scholar
  7. Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. doi:10.1016/j.tics.2011.12.010.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Braver, T. S., Gray, J. R., & Burgess, G. C. (2008). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In A. Conway, C. Jarrold, M. Kane, A. Miyake, & J. Towse (Eds.), Variation in Working Memory (pp. 76–106). Oxford University Press.Google Scholar
  9. Chang, A., Chen, C.-C., Li, H.-H., & Li, C.-S. R. (2014). Event-related potentials for post-error and post-conflict slowing. PLoS One, 9(6), e99909. doi:10.1371/journal.pone.0099909.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Crump, M. J. C., Gong, Z., & Milliken, B. (2006). The context-specific proportion congruent Stroop effect: Location as a contextual cue. Psychonomic Bulletin & Review, 13(2), 316–321.CrossRefGoogle Scholar
  11. Crump, M. J. C., Vaquero, J. M. M., & Milliken, B. (2008). Context-specific learning and control: The roles of awareness, task relevance, and relative salience. Consciousness and Cognition, 17(1), 22–36. doi:10.1016/j.concog.2007.01.004.CrossRefPubMedGoogle Scholar
  12. Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W. (2014a). The heterogeneous world of congruency sequence effects: An update. Frontiers in Psychology,. doi:10.3389/fpsyg.2014.01001.Google Scholar
  13. Duthoo, W., Abrahamse, E. L., Braem, S., & Notebaert, W. (2014b). Going, going, gone? Proactive control prevents the congruency sequence effect from rapid decay. Psychological Research, 78(4), 483–493. doi:10.1007/s00426-013-0498-4.CrossRefPubMedGoogle Scholar
  14. Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 380–390. doi:10.3758/CABN.7.4.380.CrossRefGoogle Scholar
  15. Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12(10), 374–380. doi:10.1016/j.tics.2008.07.001.CrossRefPubMedGoogle Scholar
  16. Egner, T., Delano, M., & Hirsch, J. (2007). Separate conflict-specific cognitive control mechanisms in the human brain. NeuroImage, 35(2), 940–948. doi:10.1016/j.neuroimage.2006.11.061.CrossRefPubMedGoogle Scholar
  17. Egner, T., Ely, S., & Grinband, J. (2010). Going, going, gone: characterizing the time-course of congruency sequence effects. Cognition, 1, 154. doi:10.3389/fpsyg.2010.00154.Google Scholar
  18. Einstein, G. O., & McDaniel, M. A. (2010). Prospective memory and what costs do not reveal about retrieval processes: A commentary on Smith, Hunt, McVay, and McConnell (2007). Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(4), 1082–1088. doi:10.1037/a0019184.PubMedGoogle Scholar
  19. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. doi:10.3758/BF03203267.CrossRefGoogle Scholar
  20. Fernandez-Duque, D., & Knight, M. (2008). Cognitive control: Dynamic, sustained, and voluntary influences. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 340–355. doi:10.1037/0096-1523.34.2.340.PubMedGoogle Scholar
  21. Freitas, A. L., Bahar, M., Yang, S., & Banai, R. (2007). Contextual adjustments in cognitive control across tasks. Psychological Science, 18(12), 1040–1043.CrossRefPubMedGoogle Scholar
  22. Funes, M. J., Lupiáñez, J., & Humphreys, G. (2010a). Analyzing the generality of conflict adaptation effects. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 147–161. doi:10.1037/a0017598.PubMedGoogle Scholar
  23. Funes, M. J., Lupiáñez, J., & Humphreys, G. (2010b). Sustained vs. transient cognitive control: Evidence of a behavioral dissociation. Cognition, 114(3), 338–347. doi:10.1016/j.cognition.2009.10.007.
  24. Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task set switching. In S. Monsell & J. Driver (Eds.), Control of Cognitive Processes: Attention and Performance XVIII (pp. 331–355). Cambridge: MIT Press.Google Scholar
  25. Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480–506.CrossRefGoogle Scholar
  26. Grundy, J. G., Benarroch, M. F. F., Woodward, T. S., Metzak, P. D., Whitman, J. C., & Shedden, J. M. (2013). The bivalency effect in task switching: Event-related potentials. Human Brain Mapping, 34(5), 999–1012. doi:10.1002/hbm.21488.CrossRefPubMedGoogle Scholar
  27. Hommel, B. (1994). Spontaneous decay of response-code activation. Psychological Research, 56(4), 261–268.CrossRefPubMedGoogle Scholar
  28. Jacoby, L. L., Lindsay, D. S., & Hessels, S. (2003). Item-specific control of automatic processes: Stroop process dissociations. Psychonomic Bulletin & Review, 10(3), 638–644.CrossRefGoogle Scholar
  29. Kan, I. P., Teubner-Rhodes, S., Drummey, A. B., Nutile, L., Krupa, L., & Novick, J. M. (2013). To adapt or not to adapt: The question of domain-general cognitive control. Cognition, 129(3), 637–651. doi:10.1016/j.cognition.2013.09.001.CrossRefPubMedGoogle Scholar
  30. Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 849–874. doi:10.1037/a0019842.CrossRefPubMedGoogle Scholar
  31. Kleiman, T., Hassin, R. R., & Trope, Y. (2014). The control-freak mind: Stereotypical biases are eliminated following conflict-activated cognitive control. Journal of Experimental Psychology: General, 143(2), 498–503. doi:10.1037/a0033047.CrossRefGoogle Scholar
  32. Kunde, W., Augst, S., & Kleinsorge, T. (2012). Adaptation to (non)valent task disturbance. Cognitive, Affective, & Behavioral Neuroscience, 12(4), 644–660. doi:10.3758/s13415-012-0116-8.CrossRefGoogle Scholar
  33. Kunde, W., & Stöcker, C. (2002). A Simon effect for stimulus-response duration. The Quarterly Journal of Experimental Psychology Section A, 55(2), 581–592. doi:10.1080/02724980143000433.CrossRefGoogle Scholar
  34. Lindsay, D. S., & Jacoby, L. L. (1994). Stroop process dissociations: The relationship between facilitation and interference. Journal of Experimental Psychology: Human Perception and Performance, 20(2), 219–234.PubMedGoogle Scholar
  35. Loft, S., Kearney, R., & Remington, R. (2008). Is task interference in event-based prospective memory dependent on cue presentation? Memory & Cognition, 36(1), 139–148. doi:10.3758/MC.36.1.139.CrossRefGoogle Scholar
  36. Logan, G. D., & Zbrodoff, N. J. (1979). When it helps to be misled: Facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-like task. Memory & Cognition, 7(3), 166–174. doi:10.3758/BF03197535.CrossRefGoogle Scholar
  37. Lowe, D. G., & Mitterer, J. O. (1982). Selective and divided attention in a Stroop task. Canadian Journal of Psychology, 36(4), 684–700. doi:10.1037/h0080661.CrossRefPubMedGoogle Scholar
  38. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163–203. doi:10.1037/0033-2909.109.2.163.CrossRefPubMedGoogle Scholar
  39. Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450–452. doi:10.1038/nn1051.PubMedGoogle Scholar
  40. McDaniel, M. A., & Einstein, G. O. (2000). Strategic and automatic processes in prospective memory retrieval: A multiprocess framework. Applied Cognitive Psychology, 14(7), S127–S144.CrossRefGoogle Scholar
  41. Meier, B., & Rey-Mermet, A. (2012a). Beyond feature binding: Interference from episodic context binding creates the bivalency effect in task-switching. Frontiers in Psychology, 3, 386–394. doi:10.3389/fpsyg.2012.00386.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Meier, B., & Rey-Mermet, A. (2012b). Beyond monitoring: After-effects of responding to prospective memory targets. Consciousness and Cognition, 21(4), 1644–1653. doi:10.1016/j.concog.2012.09.003.CrossRefPubMedGoogle Scholar
  43. Meier, B., Rey-Mermet, A., & Rothen, N. (2015). Turning univalent stimuli bivalent: Synesthesia can cause cognitive conflict in task switching. Cognitive Neuroscience,. doi:10.1080/17588928.2015.1017449.Google Scholar
  44. Meier, B., Rey-Mermet, A., Woodward, T. S., Müri, R., & Gutbrod, K. (2013). Episodic context binding in task switching: Evidence from amnesia. Neuropsychologia, 51(5), 886–892. doi:10.1016/j.neuropsychologia.2013.01.025.CrossRefPubMedGoogle Scholar
  45. Meier, B., Woodward, T. S., Rey-Mermet, A., & Graf, P. (2009). The bivalency effect in task switching: General and enduring. Canadian Journal of Experimental Psychology, 63(3), 201–210. doi:10.1037/a0014311.CrossRefPubMedGoogle Scholar
  46. Meier, B., Zimmermann, T. D., & Perrig, W. J. (2006). Retrieval experience in prospective memory: Strategic monitoring and spontaneous retrieval. Memory, 14(7), 872–889. doi:10.1080/09658210600783774.CrossRefPubMedGoogle Scholar
  47. Metzak, P. D., Meier, B., Graf, P., & Woodward, T. S. (2013). More than a surprise: The bivalency effect in task switching. Journal of Cognitive Psychology, 25(7), 833–842. doi:10.1080/20445911.2013.832196.CrossRefGoogle Scholar
  48. Notebaert, W., Houtman, F., Opstal, F. V., Gevers, W., Fias, W., & Verguts, T. (2009). Post-error slowing: An orienting account. Cognition, 111(2), 275–279. doi:10.1016/j.cognition.2009.02.002.CrossRefPubMedGoogle Scholar
  49. Notebaert, W., & Verguts, T. (2011). Conflict and error adaptation in the Simon task. Acta Psychologica, 136(2), 212–216. doi:10.1016/j.actpsy.2010.05.006.CrossRefPubMedGoogle Scholar
  50. Núñez Castellar, E., Kühn, S., Fias, W., & Notebaert, W. (2010). Outcome expectancy and not accuracy determines posterror slowing: ERP support. Cognitive, Affective & Behavioral Neuroscience, 10(2), 270–278. doi:10.3758/CABN.10.2.270.CrossRefGoogle Scholar
  51. Rey-Mermet, A., Koenig, T., & Meier, B. (2013). The bivalency effect represents an interference-triggered adjustment of cognitive control: An ERP study. Cognitive, Affective, & Behavioral Neuroscience, 13(3), 575–583. doi:10.3758/s13415-013-0160-z.CrossRefGoogle Scholar
  52. Rey-Mermet, A., & Meier, B. (2012). The bivalency effect: Adjustment of cognitive control without response set priming. Psychological Research, 76(1), 50–59. doi:10.1007/s00426-011-0322-y.CrossRefPubMedGoogle Scholar
  53. Rey-Mermet, A., & Meier, B. (2013). An orienting response is not enough: Bivalency not infrequency causes the bivalency effect. Advances in Cognitive Psychology, 9(3), 146–155. doi:10.2478/v10053-008-0142-9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rey-Mermet, A., & Meier, B. (2014). More conflict does not trigger more adjustment of cognitive control for subsequent events: A study of the bivalency effect. Acta Psychologica, 145, 111–117. doi:10.1016/j.actpsy.2013.11.005.CrossRefPubMedGoogle Scholar
  55. Rey-Mermet, A., & Meier, B. (2015). Age affects the adjustment of cognitive control after a conflict: Evidence from the bivalency effect. Aging, Neuropsychology, and Cognition, 22(1), 72–94. doi:10.1080/13825585.2014.889070.CrossRefGoogle Scholar
  56. Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207–231. doi:10.1037/0096-3445.124.2.207.
  57. Schlaghecken, F., Refaat, M., & Maylor, E. A. (2011). Multiple systems for cognitive control: Evidence from a hybrid prime-Simon task. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1542–1553. doi:10.1037/a0024327.PubMedGoogle Scholar
  58. Schmidt, J. R. (2013a). Questioning conflict adaptation: Proportion congruent and Gratton effects reconsidered. Psychonomic Bulletin & Review, 20(4), 615–630. doi:10.3758/s13423-012-0373-0.CrossRefGoogle Scholar
  59. Schmidt, J. R. (2013b). The Parallel Episodic Processing (PEP) model: Dissociating contingency and conflict adaptation in the item-specific proportion congruent paradigm. Acta Psychologica, 142(1), 119–126. doi:10.1016/j.actpsy.2012.11.004.CrossRefPubMedGoogle Scholar
  60. Schmidt, J. R., & De Houwer, J. (2011). Now you see it, now you don’t: Controlling for contingencies and stimulus repetitions eliminates the Gratton effect. Acta Psychologica, 138(1), 176–186. doi:10.1016/j.actpsy.2011.06.002.CrossRefPubMedGoogle Scholar
  61. Simon, J. R., & Small, A. M. (1969). Processing auditory information: Interference from an irrelevant cue. Journal of Applied Psychology, 53(5), 433–435. doi:10.1037/h0028034.CrossRefPubMedGoogle Scholar
  62. Smith, R. E. (2003). The cost of remembering to remember in event-based prospective memory: Investigating the capacity demands of delayed intention performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(3), 347–361. doi:10.1037/0278-7393.29.3.347.PubMedGoogle Scholar
  63. Smith, R. E. (2010). What costs do reveal and moving beyond the cost debate: Reply to Einstein and McDaniel (2010). Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(4), 1089–1095. doi:10.1037/a0019183.PubMedPubMedCentralGoogle Scholar
  64. Smith, R. E. (2011). Prospective memory: Beyond the cost debate. Zeitschrift Für Psychologie, 219(2), 75–76. doi:10.1027/2151-2604/a000050.CrossRefGoogle Scholar
  65. Sohn, M.-H., & Carlson, R. A. (2000). Effects of repetition and foreknowledge in task-set reconfiguration. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(6), 1445–1460. doi:10.1037//0278-7393.26.6.1445.PubMedGoogle Scholar
  66. Spapé, M. M., Band, G. P. H., & Hommel, B. (2011). Compatibility-sequence effects in the Simon task reflect episodic retrieval but not conflict adaptation: Evidence from LRP and N2. Biological Psychology, 88(1), 116–123. doi:10.1016/j.biopsycho.2011.07.001.CrossRefPubMedGoogle Scholar
  67. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. doi:10.1037/h0054651.CrossRefGoogle Scholar
  68. Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of reconfiguration and interference control. Psychological Bulletin, 136(4), 601–626. doi:10.1037/a0019791.CrossRefPubMedGoogle Scholar
  69. Verbruggen, F., Liefooghe, B., Notebaert, W., & Vandierendonck, A. (2005). Effects of stimulus–stimulus compatibility and stimulus–response compatibility on response inhibition. Acta Psychologica, 120(3), 307–326. doi:10.1016/j.actpsy.2005.05.003.CrossRefPubMedGoogle Scholar
  70. Verguts, T., & Notebaert, W. (2008). Hebbian learning of cognitive control: Dealing with specific and nonspecific adaptation. Psychological Review, 115(2), 518–525. doi:10.1037/0033-295X.115.2.518.CrossRefPubMedGoogle Scholar
  71. Verguts, T., & Notebaert, W. (2009). Adaptation by binding: a learning account of cognitive control. Trends in Cognitive Sciences, 13(6), 252–257. doi:10.1016/j.tics.2009.02.007.CrossRefPubMedGoogle Scholar
  72. Verguts, T., Notebaert, W., Kunde, W., & Wühr, P. (2011). Post-conflict slowing: Cognitive adaptation after conflict processing. Psychonomic Bulletin & Review, 18(1), 76–82. doi:10.3758/s13423-010-0016-2.CrossRefGoogle Scholar
  73. Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 46(4), 361–413. doi:10.1016/S0010-0285(02)00520-0.CrossRefPubMedGoogle Scholar
  74. Waszak, F., Hommel, B., & Allport, A. (2004). Semantic generalization of stimulus-task bindings. Psychonomic Bulletin & Review, 11(6), 1027–1033. doi:10.3758/BF03196732.CrossRefGoogle Scholar
  75. Wendt, M., Kluwe, R. H., & Peters, A. (2006). Sequential modulations of interference evoked by processing task-irrelevant stimulus features. Journal of Experimental Psychology: Human Perception and Performance, 32(3), 644–667. doi:10.1037/0096-1523.32.3.644.PubMedGoogle Scholar
  76. West, R., & Baylis, G. C. (1998). Effects of increased response dominance and contextual disintegration on the Stroop interference effect in older adults. Psychology and Aging, 13(2), 206–217.CrossRefPubMedGoogle Scholar
  77. Woodward, T. S., Meier, B., Tipper, C., & Graf, P. (2003). Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50(4), 233–238. doi:10.1026//1618-3169.50.4.233.CrossRefPubMedGoogle Scholar
  78. Woodward, T. S., Metzak, P. D., Meier, B., & Holroyd, C. B. (2008). Anterior cingulate cortex signals the requirement to break inertia when switching tasks: a study of the bivalency effect. NeuroImage, 40(3), 1311–1318. doi:10.1016/j.neuroimage.2007.12.049.CrossRefPubMedGoogle Scholar
  79. Wylie, G., & Allport, A. (2000). Task switching and the measurement of “switch costs”. Psychological Research, 63(3–4), 212–233. doi:10.1007/s004269900003.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Psychology and Center for Cognition, Learning, and MemoryUniversity of BernBernSwitzerland
  2. 2.Cognitive Psychology Unit, Department of PsychologyUniversity of ZurichZurichSwitzerland

Personalised recommendations