Psychological Research

, Volume 81, Issue 3, pp 525–537 | Cite as

Imitation and matching of meaningless gestures: distinct involvement from motor and visual imagery

  • Mathieu Lesourd
  • Jordan Navarro
  • Josselin Baumard
  • Christophe Jarry
  • Didier Le Gall
  • François Osiurak
Original Article


The aim of the present study was to understand the underlying cognitive processes of imitation and matching of meaningless gestures. Neuropsychological evidence obtained in brain damaged patients, has shown that distinct cognitive processes supported imitation and matching of meaningless gestures. Left-brain damaged (LBD) patients failed to imitate while right-brain damaged (RBD) patients failed to match meaningless gestures. Moreover, other studies with brain damaged patients showed that LBD patients were impaired in motor imagery while RBD patients were impaired in visual imagery. Thus, we hypothesize that imitation of meaningless gestures might rely on motor imagery, whereas matching of meaningless gestures might be based on visual imagery. In a first experiment, using a correlational design, we demonstrated that posture imitation relies on motor imagery but not on visual imagery (Experiment 1a) and that posture matching relies on visual imagery but not on motor imagery (Experiment 1b). In a second experiment, by manipulating directly the body posture of the participants, we demonstrated that such manipulation evokes a difference only in imitation task but not in matching task. In conclusion, the present study provides direct evidence that the way we imitate or we have to compare postures depends on motor imagery or visual imagery, respectively. Our results are discussed in the light of recent findings about underlying mechanisms of meaningful and meaningless gestures.


Mental Rotation Motor Imagery Matching Task Visual Imagery Stimulus Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from ANR (Agence Nationale pour la Recherche; Project Démences et Utilisation d’Outils/Dementia and Tool Use, N°ANR 2011 MALZ 006 03; D. Le Gall, F. Osiurak), and was performed within the framework of the LABEX CORTEX (ANR-11-LABX-0042) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007; F. Osiurak, J. Navarro) operated by the French National Research Agency (ANR).


  1. Adolphs, R. (2003). Cognitive neuroscience of human social behavior. Nature Reviews Neuroscience, 4, 165–178.CrossRefPubMedGoogle Scholar
  2. Cooper, L. A. (1975). Mental rotation of random two-dimensional shapes. Cognitive Psychology, 7, 20–43. doi: 10.1016/0010-0285(75)90003-1.CrossRefGoogle Scholar
  3. Cubelli, R., Marchetti, C., Boscolo, G., & Della Sala, S. (2000). Cognition in action: Testing a model of limb apraxia. Brain and Cognition, 44(2), 144–165. doi: 10.1006/brcg.2000.1226.CrossRefPubMedGoogle Scholar
  4. de Lange, F. P., Helmich, R. C., & Toni, I. (2006). Posture influences motor imagery: An fMRI study. NeuroImage, 33(2), 609–617. doi: 10.1016/j.neuroimage.2006.07.017.CrossRefPubMedGoogle Scholar
  5. Decety, J. (1996). Do imagined and executed actions share the same neural substrate? Cognitive Brain Research, 3(2), 87–93. doi: 10.1016/0926-6410(95)00033-X.CrossRefPubMedGoogle Scholar
  6. Decety, J., Grèzes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., … Fazio, F. (1997). Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain, 120, 1763–1777. doi: 10.1093/brain/120.10.1763.CrossRefPubMedGoogle Scholar
  7. Decety, J., & Ingvar, D. H. (1990). Brain structures participating in mental simulation of motor behavior: A neuropsychological interpretation. Acta Psychologica, 73(1), 13–34. doi: 10.1016/0001-6918(90)90056-L.CrossRefPubMedGoogle Scholar
  8. Goldenberg, G. (1995). Imitating gestures and manipulating a mannikin—The representation of the human body in ideomotor apraxia. Neuropsychologia, 33(1), 63–72. doi: 10.1016/0028-3932(94)00104-W.CrossRefPubMedGoogle Scholar
  9. Goldenberg, G. (1999). Matching and imitation of hand and finger postures in patients with damage in the left or right hemispheres. Neuropsychologia, 37(5), 559–566. doi: 10.1016/S0028-3932(98)00111-0.CrossRefPubMedGoogle Scholar
  10. Goldenberg, G. (2001). Imitation and matching of hand and finger postures. NeuroImage, 14, 132–136. doi: 10.1006/nimg.2001.0820.CrossRefGoogle Scholar
  11. Goldenberg, G. (2013). Apraxia: The cognitive side of motor control. Oxford: Oxford University Press.CrossRefGoogle Scholar
  12. Goldenberg, G., & Hagmann, S. (1997). The meaning of meaningless gestures: A study of visuo-imitative apraxia. Neuropsychologia, 35(3), 333–341. doi: 10.1016/S0028-3932(96)00085-1.CrossRefPubMedGoogle Scholar
  13. Hodges, J. R., Bozeat, S., Lambon Ralph, M. A., Patterson, K., & Spatt, J. (2000). The role of conceptual knowledge in object use evidence from semantic dementia. Brain, 123, 1913–1925. doi: 10.1093/brain/123.9.1913.CrossRefPubMedGoogle Scholar
  14. Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8(2), 71–78. doi: 10.1016/j.tics.2003.12.002.CrossRefPubMedGoogle Scholar
  15. Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemisphere: A computational approach. Psychological Review, 94, 148–175.CrossRefPubMedGoogle Scholar
  16. Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 75–78. doi: 10.1126/science.198.4312.75.CrossRefPubMedGoogle Scholar
  17. Negri, G. A. L., Rumiati, R. I., Zadini, A., Ukmar, M., Mahon, B. Z., & Caramazza, A. (2007). What is the role of motor simulation in action and object recognition? Evidence from apraxia. Cognitive Neuropsychology, 24(8), 795–816. doi: 10.1080/02643290701707412.CrossRefPubMedGoogle Scholar
  18. Ochipa, C., Rothi, L. J., & Heilman, K. M. (1989). Ideational apraxia: A deficit in tool selection and use. Annals of Neurology, 25(2), 190–193. doi: 10.1002/ana.410250214.CrossRefPubMedGoogle Scholar
  19. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefPubMedGoogle Scholar
  20. Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 709–730. doi: 10.1037/0096-1523.20.4.709.PubMedGoogle Scholar
  21. Pelgrims, B., Andres, M., & Olivier, E. (2009). Double dissociation between motor and visual imagery in the posterior parietal cortex. Cerebral Cortex, 19(10), 2298–2307. doi: 10.1093/cercor/bhn248.CrossRefPubMedGoogle Scholar
  22. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.CrossRefPubMedGoogle Scholar
  23. Rumiati, R. I., Carmo, J. C., & Corradi-Dell’Acqua, C. (2009). Neuropsychological perspectives on the mechanisms of imitation. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 364(1528), 2337–2347. doi: 10.1098/rstb.2009.0063.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Rumiati, R. I., Tomasino, B., Vorano, L., Umiltà, C., & De Luca, G. (2001). Selective deficit of imagining finger configurations. Cortex, 37, 730–733.CrossRefPubMedGoogle Scholar
  25. Schwoebel, J., & Coslett, H. B. (2005). Evidence for multiple, distinct representations of the human body. Journal of Cognitive Neuroscience, 17(4), 543–553. doi: 10.1162/0898929053467587.CrossRefPubMedGoogle Scholar
  26. Shiffrar, M., & Freyd, J. J. (1990). Apparent motion of the human body. Psychological Science, 1, 257–264.CrossRefGoogle Scholar
  27. Simmons, K., & Barsalou, L. W. (2003). The similarity-in-topography principle: Reconciling theories of conceptual deficits. Cognitive Neuropsychology, 20, 451–486.CrossRefPubMedGoogle Scholar
  28. Sirigu, A., & Duhamel, J. R. (2001). Motor and visual imagery as two complementary but neurally dissociable mental processes. Journal of Cognitive Neuroscience, 13(7), 910–919. doi: 10.1162/089892901753165827.CrossRefPubMedGoogle Scholar
  29. Sirigu, A., Grafman, J., & Sunderland, T. (1991). Multiple representations contribute to body knowledge processing. Brain, 114, 629–642. Retrieved from papers2://publication/uuid/9A1C10D4-40AD-4D1B-9675-E1746B3C2152.Google Scholar
  30. Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin,. doi: 10.1037/0033-2909.87.2.245.Google Scholar
  31. Stevens, J. A. (2005). Interference effects demonstrate distinct roles for visual and motor imagery during the mental representation of human action. Cognition, 95(3), 329–350. doi: 10.1016/j.cognition.2004.02.008.CrossRefPubMedGoogle Scholar
  32. Tessari, A., Canessa, N., Ukmar, M., & Rumiati, R. I. (2007). Neuropsychological evidence for a strategic control of multiple routes in imitation. Brain, 130(4), 1111–1126. doi: 10.1093/brain/awm003.CrossRefPubMedGoogle Scholar
  33. Tessari, A., & Rumiati, R. I. (2004). The strategic control of multiple routes in imitation of actions. Journal of Experimental Psychology: Human Perception and Performance, 30(6), 1107–1116. doi: 10.1037/0096-1523.30.6.1107.PubMedGoogle Scholar
  34. Tomasino, B., & Rumiati, R. I. (2004). Effects of strategies on mental rotation and hemispheric lateralization: Neuropsychological evidence. Journal of Cognitive Neuroscience, 16(5), 878–888. doi: 10.1162/089892904970753.CrossRefPubMedGoogle Scholar
  35. Tomasino, B., Toraldo, A., & Rumiati, R. I. (2003). Dissociation between the mental rotation of visual images and motor images in unilateral brain-damaged patients. Brain and Cognition, 51, 368–371.CrossRefPubMedGoogle Scholar
  36. Vannuscorps, G., Pillon, A., & Andres, M. (2012). Effect of biomechanical constraints in the hand laterality judgment task: Where does it come from? Frontiers in Human Neuroscience, 6, 1–9. doi: 10.3389/fnhum.2012.00299.CrossRefGoogle Scholar
  37. Vingerhoets, G., de Lange, F. P., Vandemaele, P., Deblaere, K., & Achten, E. (2002). Motor imagery in mental rotation: An fMRI study. NeuroImage, 17(3), 1623–1633. doi: 10.1006/nimg.2002.1290.CrossRefPubMedGoogle Scholar
  38. Viswanathan, S., Fritz, C., & Grafton, S. T. (2012). Telling the right hand from the left hand: Multisensory integration, not motor imagery, solves the problem. Psychological Science, 23(6), 598–607. doi: 10.1177/0956797611429802.CrossRefPubMedGoogle Scholar
  39. Wohlschlager, A., Gattis, M., & Bekkering, H. (2003). Action generation and action perception in imitation: An instance of the ideomotor principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1431), 501–515. doi: 10.1098/rstb.2002.1257.CrossRefGoogle Scholar
  40. Wraga, M., Creem, S. H., & Proffitt, D. R. (1999). The influence of spatial reference frames on imagined object and viewer rotations. Acta Psychologica, 102, 247–264.CrossRefPubMedGoogle Scholar
  41. Zacks, J., Mires, J., Tversky, B., & Hazeltine, E. (2000). Mental spatial transformations of objects and perspective. Sptaial Cognition and Computation, 2, 315–332.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mathieu Lesourd
    • 1
  • Jordan Navarro
    • 1
  • Josselin Baumard
    • 2
  • Christophe Jarry
    • 2
    • 3
  • Didier Le Gall
    • 2
    • 3
  • François Osiurak
    • 1
    • 4
  1. 1.Laboratoire d’Étude des Mécanismes Cognitifs (EA 3082), Institut de PsychologieUniversité Lyon 2Bron CedexFrance
  2. 2.Laboratoire de Psychologie des Pays de la Loire (EA 4638)Université d’AngersAngersFrance
  3. 3.Unité de Neuropsychologie, Département de NeurologieCentre Hospitalier Universitaire d’AngersAngersFrance
  4. 4.Institut Universitaire de FranceParisFrance

Personalised recommendations