Psychological Research

, Volume 81, Issue 1, pp 255–270 | Cite as

Surface and structural effects of pitch and time on global melodic expectancies

Original Article
  • 251 Downloads

Abstract

We investigated how the surface and structural information of pitch and time in melodies contribute to the perceived expectancy of melodic segments. The contour (pitch surface), tonality (pitch structure), rhythm (time surface) and metre (time structure) were preserved or altered in factorial fashion, either for the full length of a melody (Full condition) or only its last phrase (Last condition). Participants (N = 24) with a range of musical training received instructions to rate how expected the second portion of a melody was, having heard its first part. Additionally, instructions varied across blocks to attend selectively to pitch, time, or both. Expectancy ratings for the Last condition were lower than for the Full condition, indicating that ratings truly reflected expectancy (rather than overall goodness, which would predict the opposite). Interestingly, tonality and rhythm contributed to global expectancy ratings, but not contour or metre. Furthermore, listeners were unable to ignore entirely either dimension, but successfully attenuated their influence in accordance with instructions. These findings offer a unique insight into music perception by testing expectancies of melody segments (beyond single-note continuations), factorially varying both the surface and structure of pitch and time, and using a selective attention manipulation.

References

  1. Barnes, R., & Jones, M. R. (2000). Expectancy, attention, and time. Cognitive Psychology, 41, 254–311.CrossRefPubMedGoogle Scholar
  2. Bartlett, J. C., & Dowling, W. J. (1988). Scale structure and similarity of melodies. Music Perception, 5, 285–314.CrossRefGoogle Scholar
  3. Bauer, A. -K. R., Jaeger, M., Thorne, J. D., Bendixen, A., & Debener, S. (2015). The auditory dynamic attending theory revisited: a closer look at the pitch comparison task. Brain Research, 1626, 198–210. doi:10.1016/j.brainres.2015.04.032 CrossRefPubMedGoogle Scholar
  4. Bharucha, J. J., & Stoeckig, K. (1986). Reaction time and musical expectancy: priming of chords. Journal of Experimental Psychology: Human Perception and Performance, 12, 403–410.PubMedGoogle Scholar
  5. Bigand, E. (1997). Perceiving musical stability: the effect of tonal structure, rhythm, and musical expertise. Journal of Experimental Psychology: Human Perception and Performance, 23, 808–822.PubMedGoogle Scholar
  6. Bigand, E., Madurell, F., Tillmann, B., & Pineau, M. (1999). Effect of global structure and temporal organization on chord processing. Journal of Experimental Psychology: Human Perception and Performance, 25, 184–197.Google Scholar
  7. Bigand, E., & Parncutt, R. (1999). Perceiving musical tension in long chord sequences. Psychological Research/Psychologische Forschung, 62, 237–254.CrossRefPubMedGoogle Scholar
  8. Bigand, E., & Pineau, M. (1997). Global context effects on musical expectancy. Perception & Psychophysics, 59, 1098–1107.CrossRefGoogle Scholar
  9. Bigand, E., Poulin, B., Tillmann, B., Madurell, F., & D’Adamo, D. A. (2003). Sensory versus cognitive components in harmonic priming. Journal of Experimental Psychology: Human Perception and Performance, 29, 159–171.PubMedGoogle Scholar
  10. Bigand, E., & Poulin-Charronnat, B. (2006). Are we “experienced listeners”? A review of the musical capacities that do not depend on formal musical training. Cognition, 100, 100–130.CrossRefPubMedGoogle Scholar
  11. Bolger, D., Coull, J. T., & Schön, D. (2014). Metrical rhythm implicitly orients attention in time as indexed by improved target detection and left inferior parietal activation. Journal of Cognitive Neuroscience, 26, 593–605. doi:10.1162/jocn_a_00511 CrossRefPubMedGoogle Scholar
  12. Bolger, D., Trost, W., & Schön, D. (2013). Rhythm implicitly affects temporal orienting of attention across modalities. Acta Psychologica, 142, 238–244. doi:10.1016/j.actpsy.2012.11.012 CrossRefPubMedGoogle Scholar
  13. Boltz, M. G. (1989a). Perceiving the end: effects of tonal relationships on melodic completion. Journal of Experimental Psychology: Human Perception and Performance, 15, 749–761.PubMedGoogle Scholar
  14. Boltz, M. G. (1989b). Rhythm and good endings - effects of temporal structure on tonality judgments. Perception & Psychophysics, 46, 9–17.CrossRefGoogle Scholar
  15. Boltz, M. G. (1989c). Time judgments of musical endings - effects of expectancies on the filled interval effect. Perception & Psychophysics, 46, 409–418.CrossRefGoogle Scholar
  16. Boltz, M. G. (1993). The generation of temporal and melodic expectancies during musical listening. Perception & Psychophysics, 53, 585–600.CrossRefGoogle Scholar
  17. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.CrossRefPubMedGoogle Scholar
  18. Cambouropoulos, E. (2010). The musical surface: Challenging basic assumptions. Musicae Scientiae, 131-147.Google Scholar
  19. Collins, T., Tillmann, B., Barrett, F. S., Delbé, C., & Janata, P. (2014). A combined model of sensory and cognitive representations underlying tonal expectations in music: from audio signals to behavior. Psychological Review, 121, 33–65. doi:10.1037/a0034695 CrossRefPubMedGoogle Scholar
  20. Cuddy, L. L., & Cohen, A. J. (1976). Recognition of transposed melodic sequences. Quarterly Journal of Experimental Psychology, 28, 255–270.CrossRefGoogle Scholar
  21. Cuddy, L. L., Cohen, A. J., & Miller, J. (1979). Melody recognition: the experimental application of musical rules. Canadian Journal of Psychology-Revue Canadienne De Psychologie, 33, 148–157.CrossRefGoogle Scholar
  22. Cuddy, L. L., & Lunney, C. A. (1995). Expectancies generated by melodic intervals - perceptual judgments of melodic continuity. Perception & Psychophysics, 57, 451–462. doi:10.3758/bf03213071 CrossRefGoogle Scholar
  23. Desain, P., & Honing, H. (2003). The formation of rhythmic categories and metric priming. Perception, 32, 341–365. doi:10.1068/p3370 CrossRefPubMedGoogle Scholar
  24. Deutsch, D. (Ed.). (2013). The psychology of music (3rd ed.): Academic Press.Google Scholar
  25. Dewitt, L. A., & Samuel, A. G. (1990). The role of knowledge-based expectations in music perception - evidence from musical restoration. Journal of Experimental Psychology: General, 119, 123–144.CrossRefGoogle Scholar
  26. Dowling, W. J. (1973). Rhythmic groups and subjective chunks in memory for melodies. Perception & Psychophysics, 14, 37–40.CrossRefGoogle Scholar
  27. Dowling, W. J. (1978). Scale and contour: two components of a theory of memory for melodies. Psychological Review, 85, 341–354.CrossRefGoogle Scholar
  28. Dowling, W. J., & Fujitani, D. S. (1971). Contour, interval, and pitch recognition in memory for melodies. Journal of the Acoustical Society of America, 49, 524–531.CrossRefGoogle Scholar
  29. Escoffier, N., Sheng, D. Y. J., & Schirmer, A. (2010). Unattended musical beats enhance visual processing. Acta Psychologica, 135, 12–16.CrossRefPubMedGoogle Scholar
  30. Farbood, M. M. (2012). A parametric, temporal model of musical tension. Music Perception, 29, 387–428.CrossRefGoogle Scholar
  31. Graves, J. E., Micheyl, C., & Oxenham, A. J. (2014). Expectations for melodic contours transcend pitch. Journal of Experimental Psychology-Human Perception and Performance, 40, 2338–2347. doi:10.1037/a0038291 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Green, T. J., & McKeown, J. D. (2001). Capture of attention in selective frequency listening. Journal of Experimental Psychology: Human Perception and Performance, 27, 1197–1210. doi:10.1037//0096-1523.27.5.1197 PubMedGoogle Scholar
  33. Handel, S. (1998). The interplay between metric and figural rhythmic organization. Journal of Experimental Psychology: Human Perception and Performance, 24, 1546–1561.Google Scholar
  34. Hébert, S., & Cuddy, L. L. (2002). Detection of metric structure in auditory figural patterns. Perception & Psychophysics, 64, 909–918.CrossRefGoogle Scholar
  35. Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge: MIT Press.Google Scholar
  36. Huron, D., & Margulis, E. H. (2010). Musical expectancy and thrills Handbook of music and emotion: Theory, research, applications. (pp. 575–604): Oxford University Press, New York, NY.Google Scholar
  37. Jones, M. R. (1976). Time, our lost dimension - toward a new theory of perception, attention, and memory. Psychological Review, 83, 323–355.CrossRefPubMedGoogle Scholar
  38. Jones, M. R. (1987). Dynamic pattern structure in music - recent theory and research. Perception & Psychophysics, 41, 621–634.CrossRefGoogle Scholar
  39. Jones, M. R., & Boltz, M. G. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.CrossRefPubMedGoogle Scholar
  40. Jones, M. R., Boltz, M. G., & Klein, J. M. (1993). Expected endings and judged duration. Memory & Cognition, 21, 646–665.CrossRefGoogle Scholar
  41. Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313–319.CrossRefPubMedGoogle Scholar
  42. Jones, M. R., & Ralston, J. T. (1991). Some influences of accent structure on melody recognition. Memory & Cognition, 19, 8–20.CrossRefGoogle Scholar
  43. Jones, M. R., Summerell, L., & Marshburn, E. (1987). Recognizing melodies - a dynamic interpretation. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 39, 89–121.Google Scholar
  44. Jones, M. R., & Yee, W. (1997). Sensitivity to time change: the role of context and skill. Journal of Experimental Psychology: Human Perception and Performance, 23, 693–709. doi:10.1037//0096-1523.23.3.693 Google Scholar
  45. Juslin, P. N., & Västfjäll, D. (2008). Emotional responses to music: the need to consider underlying mechanisms. Behavioral and Brain Sciences, 31, 559–575. doi:10.1017/S0140525X08005293 CrossRefPubMedGoogle Scholar
  46. Kidd, G., Boltz, M. G., & Jones, M. R. (1984). Some effects of rhythmic context on melody recognition. American Journal of Psychology, 97, 153–173.CrossRefPubMedGoogle Scholar
  47. Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. New York, NY: Oxford University Press.Google Scholar
  48. Krumhansl, C. L. (1995). Music psychology and music theory - problems and prospects. Music Theory Spectrum, 17, 53–80. doi:10.1525/mts.1995.17.1.02a00030 CrossRefGoogle Scholar
  49. Krumhansl, C. L. (1997). Effects of perceptual organization and musical form on melodic expectancies. In M. Leman (Ed.), Music, Gestalt, and computing (Vol. 1317, pp. 294-320): Springer Berlin Heidelberg. doi:10.1007/BFb0034122
  50. Krumhansl, C. L., & Cuddy, L. L. (2010). A theory of tonal hierarchies in music. In M. R. Jones, R. R. Fay & A. N. Popper (Eds.), Music perception. Springer handbook of auditory research (pp. 51-87). New York, NY: Springer Science. doi:10.1007/978-1-4419-6114-3_1
  51. Krumhansl, C. L., Louhivuori, J., Toiviainen, P., Jarvinen, T., & Eerola, T. (1999). Melodic expectation in finnish spiritual folk hymns: convergence of statistical, behavioral, and computational approaches. Music Perception, 17, 151–195.CrossRefGoogle Scholar
  52. Krumhansl, C. L., & Schmuckler, M. A. (1986, July). Key-finding in music: An algorithm based on pattern matching to tonal hierarchies. Paper presented at the 19th Annual Meeting of the Society of Mathematical Psychology, Cambridge, MA.Google Scholar
  53. Lamont, A., & Dibben, N. (2001). Motivic structure and the perception of similarity. Music Perception, 18, 245–274.CrossRefGoogle Scholar
  54. Large, E. W., & Jones, M. R. (1999). The dynamics of attending: how people track time-varying events. Psychological Review, 106, 119–159.CrossRefGoogle Scholar
  55. Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science, 26, 1–37.CrossRefGoogle Scholar
  56. Larson, S. (2004). Musical forces and melodic expectations: comparing computer models and experimental results. Music Perception, 21, 457–498. doi:10.1525/mp.2004.21.4.457 CrossRefGoogle Scholar
  57. Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, Massachusetts: MIT Press.Google Scholar
  58. London, J. (2004). Hearing in time: Psychological aspects of musical meter. Oxford: Oxford University Press.CrossRefGoogle Scholar
  59. Margulis, E. H. (2005). A model of melodic expectation. Music Perception, 22, 663–713. doi:10.1525/mp.2005.22.4.663 CrossRefGoogle Scholar
  60. Marmel, F., Tillmann, B., & Delbe, C. (2010). Priming in melody perception: tracking down the strength of cognitive expectations. Journal of Experimental Psychology: Human Perception and Performance, 36, 1016–1028. doi:10.1037/a0018735 PubMedGoogle Scholar
  61. Mathworks, (2004). Matlab. Natick, MA: The Mathworks Inc.Google Scholar
  62. Matsunaga, R., & Abe, J. I. (2005). Cues for key perception of a melody: pitch set alone? Music Perception, 23, 153–164.CrossRefGoogle Scholar
  63. Meyer, L. B. (1956). Emotion and meaning in music. Chicago: University of Chicago Press.Google Scholar
  64. Narmour, E. (1990). The analysis and cognition of basic melodic structures: The implication-realization model. Chicago, IL, US: University of Chicago Press.Google Scholar
  65. Narmour, E. (1992). The analysis and cognition of melodic complexity: The implication-realization model: University of Chicago Press.Google Scholar
  66. Palmer, C., & Krumhansl, C. L. (1987a). Independent temporal and pitch structures in determination of musical phrases. Journal of Experimental Psychology: Human Perception and Performance, 13, 116–126.PubMedGoogle Scholar
  67. Palmer, C., & Krumhansl, C. L. (1987b). Pitch and temporal contributions to musical phrase perception - effects of harmony, performance timing, and familiarity. Perception & Psychophysics, 41, 505–518.CrossRefGoogle Scholar
  68. Pearce, M. T., & Wiggins, G. A. (2006). Expectation in melody: the influence of context and learning. Music Perception, 23, 377–405.CrossRefGoogle Scholar
  69. Pearce, M. T., & Wiggins, G. A. (2012). Auditory expectation: the information dynamics of music perception and cognition. Topics in Cognitive Science, 4, 625–652. doi:10.1111/j.1756-8765.2012.01214.x CrossRefPubMedGoogle Scholar
  70. Pfordresher, P. Q. (2008). Auditory feedback in music performance: the role of transition-based similarity. Journal of Experimental Psychology: Human Perception and Performance, 34, 708–725.PubMedGoogle Scholar
  71. Povel, D. J. (1981). Internal representation of simple temporal patterns. Journal of Experimental Psychology: Human Perception and Performance, 7, 3–18.PubMedGoogle Scholar
  72. Povel, D. J., & Essens, P. (1985). Perception of temporal patterns. Music Perception, 2, 411–440.CrossRefGoogle Scholar
  73. Prince, J. B. (2011). The integration of stimulus dimensions in the perception of music. Quarterly Journal of Experimental Psychology, 64, 2125–2152. doi:10.1080/17470218.2011.573080 CrossRefGoogle Scholar
  74. Prince, J. B. (2014a). Contributions of pitch contour, tonality, rhythm, and meter to melodic similarity. Journal of Experimental Psychology: Human Perception and Performance, 40, 2319–2337. doi:10.1037/a0038010 PubMedGoogle Scholar
  75. Prince, J. B. (2014b). Pitch structure, but not selective attention, affects accent weightings in metrical grouping. Journal of Experimental Psychology: Human Perception and Performance, 40, 2073–2090. doi:10.1037/a0037730 PubMedGoogle Scholar
  76. Prince, J. B., & Schmuckler, M. A. (2014). The tonal-metric hierarchy: a corpus analysis. Music Perception, 31, 254–270. doi:10.1525/MP.2014.31.3.254 CrossRefGoogle Scholar
  77. Prince, J. B., Schmuckler, M. A., & Thompson, W. F. (2009). The effect of task and pitch structure on pitch-time interactions in music. Memory & Cognition, 37, 368–381. doi:10.3758/MC.37.3.368 CrossRefGoogle Scholar
  78. Repp, B. H. (1992). Probing the cognitive representation of musical time - structural constraints on the perception of timing perturbations. Cognition, 44, 241–281.CrossRefPubMedGoogle Scholar
  79. Repp, B. H. (1995). Detectability of duration and intensity increments in melody tones - a partial connection between music perception and performance. Perception & Psychophysics, 57, 1217–1232.CrossRefGoogle Scholar
  80. Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5, 35–53. doi:10.1080/17459737.2011.573676 CrossRefGoogle Scholar
  81. Rohrmeier, M., & Koelsch, S. (2012). Predictive information processing in music cognition. A critical review. International Journal of Psychophysiology, 83, 164–175. doi:10.1016/j.ijpsycho.2011.12.010 CrossRefPubMedGoogle Scholar
  82. Ross, J., & Houtsma, A. J. M. (1994). Discrimination of auditory temporal patterns. Perception & Psychophysics, 56, 19–26. doi:10.3758/bf03211687 CrossRefGoogle Scholar
  83. Scharf, B., Quigley, S., Aoki, C., Peachey, N., & Reeves, A. (1987). Focused auditory attention and frequency-selectivity. Perception & Psychophysics, 42, 215–223. doi:10.3758/bf03203073 CrossRefGoogle Scholar
  84. Schellenberg, E. G. (1996). Expectancy in melody: tests of the implication realization model. Cognition, 58, 75–125.CrossRefPubMedGoogle Scholar
  85. Schellenberg, E. G. (1997). Simplifying the implication-realization model of melodic expectancy. Music Perception, 14, 295–318.CrossRefGoogle Scholar
  86. Schellenberg, E. G. (2001). Asymmetries in the discrimination of musical intervals: going out-of-tune is more noticeable than going in-tune. Music Perception, 19, 223–248.CrossRefGoogle Scholar
  87. Schmuckler, M. A. (1989). Expectation in music - investigation of melodic and harmonic processes. Music Perception, 7, 109–150.CrossRefGoogle Scholar
  88. Schmuckler, M. A. (1990). The performance of global expectations. Psychomusicology Special Edition: Music expectancy, 9, 122–147.CrossRefGoogle Scholar
  89. Schmuckler, M. A. (1997). Expectancy effects in memory for melodies. Canadian Journal of Experimental Psychology, 51, 292–305.CrossRefPubMedGoogle Scholar
  90. Schmuckler, M. A. (2009). Components of melodic processing. In S. Hallam, I. Cross, & M. Thaut (Eds.), Oxford handbook of music psychology (pp. 93–106). Oxford, UK: Oxford University Press.Google Scholar
  91. Schmuckler, M. A., & Boltz, M. G. (1994). Harmonic and rhythmic influences on musical expectancy. Perception & Psychophysics, 56, 313–325.CrossRefGoogle Scholar
  92. Schubert, E., & Stevens, C. (2006). The effect of implied harmony, contour and musical expertise on judgments of similarity of familiar melodies. Journal of New Music Research, 35, 161–174. doi:10.1080/09298210600835000 CrossRefGoogle Scholar
  93. Schulkind, M. D. (1999). Long-term memory for temporal structure: evidence from the identification of well-known and novel songs. Memory & Cognition, 27, 896–906.CrossRefGoogle Scholar
  94. Serafine, M. L., Glassman, N., & Overbeeke, C. (1989). The cognitive reality of hierarchic structure in music. Music Perception, 6, 397–430.CrossRefGoogle Scholar
  95. Stalinski, S. M., & Schellenberg, E. G. (2010). Shifting perceptions: developmental changes in judgments of melodic similarity. Developmental Psychology, 46, 1799–1803.CrossRefPubMedGoogle Scholar
  96. Steinbeis, N., Koelsch, S., & Sloboda, J. A. (2006). The role of harmonic expectancy violations in musical emotions: evidence from subjective, physiological, and neural responses. Journal of Cognitive Neuroscience, 18, 1380–1393.CrossRefPubMedGoogle Scholar
  97. Temperley, D. (2008). A probabilistic model of melody perception. Cognitive Science, 32, 418–444. doi:10.1080/03640210701864089 CrossRefPubMedGoogle Scholar
  98. Temperley, D., & Marvin, E. W. (2008). Pitch-class distribution and the identification of key. Music Perception, 25, 193–212.CrossRefGoogle Scholar
  99. Thompson, W. F., Cuddy, L. L., & Plaus, C. (1997). Expectancies generated by melodic intervals: evaluation of principles of melodic implication in a melody-completion task. Perception & Psychophysics, 59, 1069–1076. doi:10.3758/bf03205521 CrossRefGoogle Scholar
  100. Tillmann, B., & Lebrun-Guillaud, G. (2006). Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. Psychological Research, 70, 345–358.CrossRefPubMedGoogle Scholar
  101. Tillmann, B., & Marmel, F. (2013). Musical expectations within chord sequences: facilitation due to tonal stability without closure effects. Psychomusicology: Music, Mind, and Brain, 23, 1–5.CrossRefGoogle Scholar
  102. Tillmann, B., Poulin-Charronnat, B., & Bigand, E. (2014). The role of expectation in music: from the score to emotions and the brain. Wiley Interdisciplinary Reviews: Cognitive Science, 5, 105–113.PubMedGoogle Scholar
  103. Zurbriggen, E. L., Fontenot, D. L., & Meyer, D. E. (2006). Representation and execution of vocal motor programs for expert singing of tonal melodies. Journal of Experimental Psychology: Human Perception and Performance, 32, 944–963. doi:10.1037/0096-1523.32.4.944 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Murdoch UniversityPerthAustralia

Personalised recommendations