Psychological Research

, Volume 81, Issue 1, pp 278–288 | Cite as

Physiological threat responses predict number processing

  • Annika SchollEmail author
  • Korbinian Moeller
  • Daan Scheepers
  • Hans-Christoph Nuerk
  • Kai Sassenberg
Original Article


Being able to adequately process numbers is a key competency in everyday life. Yet, self-reported negative affective responses towards numbers are known to deteriorate numerical performance. Here, we investigated how physiological threat responses predict numerical performance. Physiological responses reflect whether individuals evaluate a task as exceeding or matching their resources and in turn experience either threat or challenge, which influences subsequent performance. We hypothesized that, the more individuals respond to a numerical task with physiological threat, the worse they would perform. Results of an experiment with cardiovascular indicators of threat/challenge corroborated this expectation. The findings thereby contribute to our understanding of the physiological mechanism underlying the influence of negative affective responses towards numbers on numerical performance.


Total Peripheral Resistance Cardiovascular Reactivity Numerical Performance Physiological Indicator Task Engagement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alter, A. L., Aronson, J., Darley, J. M., Rodriguez, C., & Ruble, D. N. (2010). Rising to the threat: reducing stereotype threat by reframing the threat as a challenge. Journal of Experimental Social Psychology, 46, 166–171.CrossRefGoogle Scholar
  2. Ansari, T. L., & Derakshan, N. (2011). The neural correlates of cognitive effort in anxiety: effects on processing efficiency. Biological Psychology, 86, 337–348.CrossRefPubMedGoogle Scholar
  3. Ashcraft, M. (2002). Math anxiety: personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11, 181–185.CrossRefGoogle Scholar
  4. Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130, 224–237.CrossRefGoogle Scholar
  5. Ashcraft, M. H., & Ridley, K. S. (2005). Math anxiety and its cognitive consequences: a tutorial review. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 315–327). New York: Psychology Press.Google Scholar
  6. Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.Google Scholar
  7. Beilock, S. L. (2008). Math performance in stressful situations. Current Directions in Psychological Science, 17, 339–343.CrossRefGoogle Scholar
  8. Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail: working memory and “choking under pressure” in math. Psychological Science, 16, 101–105.CrossRefPubMedGoogle Scholar
  9. Blascovich, J. (2000). Psychophysiological methods. In H. T. Reis, H. Judd, & C. M. Judd (Eds.), Handbook of research methods in social psychology (pp. 117–137). Cambridge: Cambridge University Press.Google Scholar
  10. Blascovich, J. (2008). Challenge, threat, and health. In J. Y. Shah & W. L. Gardner (Eds.), Handbook of motivation science (pp. 481–493). New York: Guilford Press.Google Scholar
  11. Blascovich, J., & Mendes, W. B. (2000). Challenge and threat appraisals: the role of affective cues. In J. Forgas (Ed.), Feeling and thinking: The role of affect in social cognition (pp. 59–82). Cambridge: Cambridge University Press.Google Scholar
  12. Blascovich, J., & Mendes, W. B. (2010). Social psychophysiology and embodiment. In D. Gilbert, S. Fiske, & G. Lindzey (Eds.), Handbook of social psychology (5th ed.). New York: Wiley.Google Scholar
  13. Blascovich, J., Mendes, W. B., Hunter, S. B., & Salomon, K. (1999). Social “facilitation” as challenge and threat. Journal of Personality and Social Psychology, 31, 422–429.CrossRefGoogle Scholar
  14. Blascovich, J., Seery, M. D., Mugridge, C. A., Norris, R. K., & Weisbuch, M. (2004). Predicting athletic performance from cardiovascular indexes of challenge and threat. Journal of Experimental Social Psychology, 40, 683–688.CrossRefGoogle Scholar
  15. Blascovich, J., & Tomaka, J. (1996). The biopsychosocial model of arousal regulation. In M. Zanna (Ed.), Advances in experimental social psychology (Vol. 28, pp. 1–51). New York: Academic Press.Google Scholar
  16. Cates, G. L., & Rhymer, K. N. (2003). Examining the relationship between mathematics anxiety and mathematics performance: an instructional hierarchy perspective. Journal of Behavioral Education, 12, 23–34.CrossRefGoogle Scholar
  17. Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. New York: Chapman & Hall.Google Scholar
  18. De Wit, F. C., Scheepers, D., & Jehn, K. A. (2012). Cardiovascular reactivity and resistance to opposing viewpoints during intragroup conflict. Psychophysiology, 49, 1691–1699.CrossRefGoogle Scholar
  19. Derakshan, N., & Eysenck, M. W. (2009). Anxiety, processing efficiency, and cognitive performance: new developments from attentional control theory. European Psychologist, 14, 168–176.CrossRefGoogle Scholar
  20. Derks, B., Scheepers, D., Van Laar, C., & Ellemers, N. (2011). The threat vs. challenge of car parking for women: how self- and group affirmation affect cardiovascular responses. Journal of Experimental Social Psychology, 47, 178–183.CrossRefGoogle Scholar
  21. Eden, C., Heine, A., & Jacobs, A. M. (2013). Mathematics anxiety and its development in the course of formal schooling—a review. Psychology, 4, 27–35.CrossRefGoogle Scholar
  22. Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136, 103–127.CrossRefPubMedGoogle Scholar
  23. Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7, 336–353.CrossRefPubMedGoogle Scholar
  24. Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480–506.CrossRefGoogle Scholar
  25. Gross, J., Hudson, C., & Price, D. (2009). The long term costs of numeracy difficulties. London: Every Child a Chance Trust and KPMG.Google Scholar
  26. Hopko, D. R., Ashcraft, M. H., Gute, J., Ruggiero, K. J., & Lewis, C. (1998). Mathematics anxiety and working memory: support for the existence of a deficient inhibition mechanism. Journal of Anxiety Disorders, 12, 343–355.CrossRefPubMedGoogle Scholar
  27. Hopko, D. R., McNeil, D. W., Lejuez, C. W., Ashcraft, M. H., Eifert, G. H., & Riel, J. (2003). The effects of anxious responding on arithmetic and lexical decision task performance. Journal of Anxiety Disorders, 17, 647–665.CrossRefPubMedGoogle Scholar
  28. Huber, S., Moeller, K., Nuerk, H.-C., Macizo, P., Herrera, A., & Willmes, K. (2013). Cognitive control in number processing: a computational model. In R. West & T. Stewart (Eds.), Proceedings of the 12th international conference on cognitive modeling (pp. 185–190). Ottawa: Carleton University.Google Scholar
  29. Jamieson, J. P., Mendes, W. B., & Nock, M. K. (2013). Improving acute stress responses: the power of reappraisal. Current Directions in Psychological Science, 22, 51–56.CrossRefGoogle Scholar
  30. Krinzinger, H., Kaufman, L., & Willmes, K. (2009). Math anxiety and math ability in early primary school years. Journal of Psycho-Educational Assessment, 27, 206–225.CrossRefGoogle Scholar
  31. Macizo, P., & Herrera, A. (2011). Cognitive control in number processing: evidence from the unit-decade compatibility effect. Acta Psychologica, 136, 112–118.CrossRefPubMedGoogle Scholar
  32. Maloney, E. A., & Beilock, S. L. (2012). Math anxiety: who has it, why it develops, and how to guard against it. Trends in Cognitive Sciences, 16, 404–406. doi: 10.1016/j.tics.2012.06.008.CrossRefPubMedGoogle Scholar
  33. Moeller, K., Fischer, M. H., Nuerk, H., & Willmes, K. (2009). Eye fixation behaviour in the number bisection task: evidence for temporal specificity. Acta Psychologica, 131, 209–220.CrossRefPubMedGoogle Scholar
  34. Moenikia, M., & Zahed-Babelan, A. (2010). A study of simple and multiple relations between mathematics attitude, academic motivation and intelligence quotient with mathematics achievement. Procedia Social and Behavioral Sciences, 2, 1537–1542.CrossRefGoogle Scholar
  35. Moore, L. J., Vine, S. J., Wilson, M. R., & Freeman, P. (2012). The effect of challenge and threat states on performance: an examination of potential mechanisms. Psychophysiology, 49, 1417–1425.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: verbal reports on mental processes. Psychological Review, 84, 231–259.CrossRefGoogle Scholar
  37. Nuerk, H.-C., Geppert, B. E., van Herten, M., & Willmes, K. (2002). On the impact of different number representations in the number bisection task. Cortex, 38, 691–715.CrossRefPubMedGoogle Scholar
  38. Núñez Peña, M. I., & Colomé, À. (2014). Reactive recruitment of attentional control in math anxiety: an ERP study of numeric conflict monitoring and adaptation. PLoS ONE, 9, e99579.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Parsons, S., & Bynner, J. (2005) Does numeracy matter more? NRDC (National Research and Development Centre for adult literacy and numeracy).Google Scholar
  40. Pecchinenda, A., & Smith, C. A. (1996). The motivational significance of skin conductance activity during a difficult problem-solving task. Cognition and Emotion, 10, 481–503.CrossRefGoogle Scholar
  41. Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2013). Math anxiety, working memory and math achievement in early elementary school. Journal of Cognition and Development, 14, 187–202.CrossRefGoogle Scholar
  42. Scheepers, D., de Wit, F., Ellemers, N., & Sassenberg, K. (2012). Social power makes the heart work more efficiently: evidence from cardiovascular markers of challenge and threat. Journal of Experimental Social Psychology, 48, 371–374.CrossRefGoogle Scholar
  43. Seery, M. D., Weisbuch, M., Hetenyi, M. A., & Blascovich, J. (2010). Cardiovascular measures independently predict performance in a university course. Psychophysiology, 47, 535–539.CrossRefPubMedGoogle Scholar
  44. Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Dooren, L. J. P. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27, 1–23.CrossRefPubMedGoogle Scholar
  45. Steele, C. M. (1988). The psychology of self-affirmation: Sustaining the integrity of the self. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 21, pp. 261–302). San Diego: Academic Press.Google Scholar
  46. Tomaka, J., Blascovich, J., Kelsey, R. M., & Leitten, C. L. (1993). Subjective, physiological, and behavioral effects of threat and challenge appraisal. Journal of Personality and Social Psychology, 18, 616–624.CrossRefGoogle Scholar
  47. Tzelgov, J., Henik, A., & Berger, J. (1992). Controlling Stroop effects by manipulating expectations for color words. Memory & Cognition, 20, 727–735.CrossRefGoogle Scholar
  48. Vrana, S. R., & Rollock, D. (1998). Physiological response to a minimal social encounter: effects of gender, ethnicity, and social context. Psychophysiology, 35, 462–469.CrossRefPubMedGoogle Scholar
  49. Weisbuch-Remington, M., Mendes, W. B., Seery, M. D., & Blascovich, J. (2005). The influence of religious stimuli outside of subjective awareness during motivated performance situations. Personality and Social Psychology Bulletin, 31, 1203–1216.CrossRefPubMedGoogle Scholar
  50. Wood, G., Nuerk, H.-C., Moeller, K., Geppert, B., Schnitker, R., Weber, J., et al. (2008). All for one but not one for all: how multiple number representations are recruited in one numerical task. Brain Research, 1187, 154–166.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Annika Scholl
    • 1
    Email author
  • Korbinian Moeller
    • 1
    • 2
  • Daan Scheepers
    • 3
  • Hans-Christoph Nuerk
    • 2
  • Kai Sassenberg
    • 1
    • 2
  1. 1.Leibniz-Institut fuer WissensmedienTuebingenGermany
  2. 2.Department of Psychology and LEAD Graduate SchoolUniversity of TuebingenTuebingenGermany
  3. 3.Leiden UniversityLeidenThe Netherlands

Personalised recommendations