Psychological Research

, Volume 80, Issue 4, pp 660–676 | Cite as

Age-related differences in the P3 amplitude in change blindness

  • Katharina Bergmann
  • Anna-Lena Schubert
  • Dirk Hagemann
  • Andrea Schankin
Original Article

Abstract

Observers often miss visual changes in the environment when they co-occur with other visual disruptions. This phenomenon is called change blindness. Previous research has shown that change blindness increases with age. The aim of the current study was to explore the role of post-perceptual stimulus processing in age differences. Therefore, the P3 component of the event-related potential was measured while younger, middle-aged, and older participants performed a change detection task under different task demands. Older adults detected fewer changes than younger adults, even when the task was very easy. Detected changes elicited greater P3 amplitudes than undetected changes in younger adults. This effect was reduced or even absent for middle-aged and older participants, irrespective of task demands. Because this P3 effect is supposed to reflect participants’ confidence in change detection, less confidence in own responses may explain the decline of change detection performance in normal aging.

Notes

Acknowledgments

Anna-Lena Schubert, Institute of Psychology, University of Heidelberg; Dirk Hagemann, Institute of Psychology, University of Heidelberg; Andrea Schankin, Institute of Psychology, University of Heidelberg and Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. This research was supported by grants from the Deutsche Forschungsgemeinschaft (German Research Foundation) to Andrea Schankin (SCHA 1483/2-1 and SCHA 1483/2-2).

Ethical standard

All human studies have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study were omitted. The manuscript does not contain clinical studies or patient data.

References

  1. Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual search: expanding the useful field of view. Journal of the Optical Society of America A, 5(12), 2210. doi: 10.1364/josaa.5.002210.CrossRefGoogle Scholar
  2. Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1993). Visual attention problems as a predictor of vehicle crashes in older drivers. Investigative Ophthalmology and Visual Science, 34(11), 3110–3123.PubMedGoogle Scholar
  3. Batchelder, S., Rizzo, M., Vanderleest, R., & Vecera, S. (2003, July). Traffic scene related change blindness in older drivers. Proceedings of the 2nd International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design, Resource document. Symposium conducted at the meeting of the Public Policy Center University of Iowa, Park City, Utah. http://drivingassessment.uiowa.edu/DA2003/pdf/40_Batchelderformat.pdf. Accessed Sept 2014.
  4. Block, N. (1995). On a confusion about a function of consciousness. Behavioral and Brain Sciences, 18(2), 227. doi: 10.1017/s0140525x00038188.CrossRefGoogle Scholar
  5. Block, N. (1996). How can we find the neural correlate of consciousness? Trends in Neurosciences, 19(11), 456–459. doi: 10.1016/S0166-2236(96)20049-9.CrossRefPubMedGoogle Scholar
  6. Boksem, M. A. S., Meijman, T. F., & Lorist, M. M. (2005). Effects of mental fatigue on attention: an ERP study. Cognitive Brain Research, 25(1), 107–116. doi: 10.1016/j.cogbrainres.2005.04.011.CrossRefPubMedGoogle Scholar
  7. Cabeza, R., Anderson, N. D., Houle, S., Mangels, J. A., & Nyberg, L. (2000). Age-related differences in neural activity during item and temporal-order memory retrieval: a positron emission tomography study. Journal of Cognitive Neuroscience, 12(1), 197–206. doi: 10.1162/089892900561832.CrossRefPubMedGoogle Scholar
  8. Caird, J. K., Edwards, C. J., Creaser, J. I., & Horrey, W. J. (2005). Older driver failures of attention at intersections: using change blindness methods to assess turn decision accuracy. Human Factors: The Journal of the Human Factors and Ergonomics Society, 47(2), 235–249. doi: 10.1518/0018720054679542.CrossRefGoogle Scholar
  9. Costello, M. C., Madden, D. J., Mitroff, S. R., & Whiting, W. L. (2010). Age-related decline of visual processing components in change detection. Psychology and Aging, 25(25), 356–368. doi: 10.1037/a0017625.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daffner, K. R., Alperin, B. R., Mott, K. K., & Holcomb, P. J. (2014). Age-related differences in the automatic processing of single letters. Aging, 25(3), 77–82. doi: 10.1097/WNR.0000000000000027.Google Scholar
  11. Daffner, K. R., Chong, H., Sun, X., Tarbi, E. C., Riis, J. L., McGinnis, S. M., et al. (2011). Mechanisms underlying age- and performance-related differences in working memory. Journal of Cognitive Neuroscience, 23(6), 1298–1314. doi: 10.1162/jocn.2010.21540.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Deaton, J. E., & Parasuraman, R. (1993). Sensory and cognitive vigilance: effects of age on performance and subjective workload. Human Performance, 6(1), 71–97. doi: 10.1207/s15327043hup0601_4.CrossRefGoogle Scholar
  13. Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: toward a unified theory of cognitive development and aging. Developmental Review, 12(1), 45–75. doi: 10.1016/0273-2297(92)90003-k.CrossRefGoogle Scholar
  14. Dobbs, A. R., & Rule, B. G. (1989). Adult age differences in working memory. Psychology and Aging, 4(4), 500–503. doi: 10.1037//0882-7974.4.4.500.CrossRefPubMedGoogle Scholar
  15. Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11(3), 357. doi: 10.1017/s0140525x00058027.CrossRefGoogle Scholar
  16. Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113(4), 501–517. doi: 10.1037/0096-3445.113.4.501.CrossRefGoogle Scholar
  17. Eimer, M., & Mazza, V. (2005). Electrophysiological correlates of change detection. Psychophysiology, 42(3), 328–342. doi: 10.1111/j.1469-8986.2005.00285.x.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fabiani, M. (2012). It was the best of times, it was the worst of times: a psychophysiologist’s view of cognitive aging. Psychophysiology, 49(3), 283–304. doi: 10.1111/j.1469-8986.2011.01331.x.CrossRefPubMedGoogle Scholar
  19. Fjell, A. M., & Walhovd, K. B. (2001). P300 and neuropsychological tests as measures of aging: scalp topography and cognitive changes. Brain Topography, 14(1), 25–40. doi: 10.1023/A:1012563605837.CrossRefPubMedGoogle Scholar
  20. Fjell, A. M., & Walhovd, K. B. (2003). On the topography of P3a and P3b across the adult lifespan-a factor-analytic study using orthogonal procrustes rotation. Brain Topography, 15(3), 153–164. doi: 10.1023/A:1022654116566.CrossRefPubMedGoogle Scholar
  21. Fjell, A. M., & Walhovd, K. B. (2004). Life-span changes in P3a. Psychophysiology, 41(4), 575–583. doi: 10.1111/j.1469-8986.2004.00177.x.CrossRefPubMedGoogle Scholar
  22. Fjell, A. M., & Walhovd, K. B. (2005). Age-sensitivity of P3 in high-functioning adults. Neurobiology of Aging, 26(9), 1297–1299. doi: 10.1016/j.neurobiolaging.2005.02.018.CrossRefPubMedGoogle Scholar
  23. Friedman, D. (2008). The components of aging. In S. J. Luck & E. S. Kappenman (Eds.), Oxford Handbook of Event-Related Potential Components (pp. 513–535). New York: Oxford University Press.Google Scholar
  24. Friedman, D., Kazmerski, V., & Fabiani, M. (1997). An overview of age-related changes in the scalp distribution of P3b. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 104(6), 498–513. doi: 10.1016/S0168-5597(97)00036-1.CrossRefGoogle Scholar
  25. Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–484. doi: 10.1016/0013-4694(83)90135-9.CrossRefPubMedGoogle Scholar
  26. Green, D. M., & Swets, J. A. (1966). Signal Detection Theory and Psychophysics. Huntington, N.Y: R.E. Krieger Pub. Co.Google Scholar
  27. Hedden, T., & Gabrieli, J. D. E. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nature Reviews Neuroscience, 5(2), 87–96. doi: 10.1038/nrn1323.CrossRefPubMedGoogle Scholar
  28. Henderson, J. M. (1997). Transsaccadic memory and integration during real-world object perception. Psychological Science, 8(1), 51–55. doi: 10.1111/j.1467-9280.1997.tb00543.x.CrossRefGoogle Scholar
  29. Johnson, M. R., Mitchell, K. J., Raye, C. L., D’Esposito, M., & Johnson, M. K. (2007). A brief thought can modulate activity in extrastriate visual areas: top-down effects of refreshing just-seen visual stimuli. NeuroImage, 37(1), 290–299. doi: 10.1016/j.neuroimage.2007.05.017.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Koivisto, M., & Revonsuo, A. (2003). An ERP study of change detection, change blindness, and visual awareness. Psychophysiology, 40(3), 423–429. doi: 10.1111/1469-8986.00044.CrossRefPubMedGoogle Scholar
  31. Kovalchik, S., Camerer, C. F., Grether, D. M., Plott, C. R., & Allman, J. M. (2005). Aging and decision making: a comparison between neurologically healthy elderly and young individuals. Journal of Economic Behavior and Organization, 58(1), 79–94. doi: 10.1016/j.jebo.2003.12.001.CrossRefGoogle Scholar
  32. Li, L., Gratton, C., Fabiani, M., & Knight, R. T. (2013). Age-related frontoparietal changes during the control of bottom-up and top-down attention: an ERP study. Neurobiology of Aging, 34(2), 477–488. doi: 10.1016/j.neurobiolaging.2012.02.025.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lorenzo-López, L., Amenedo, E., Pascual-Marqui, R. D., & Cadaveira, F. (2008). Neural correlates of age-related visual search decline: a combined ERP and sLORETA study. NeuroImage, 41(2), 511–524. doi: 10.1016/j.neuroimage.2008.02.041.CrossRefPubMedGoogle Scholar
  34. Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, Mass: MIT Press.Google Scholar
  35. Niedeggen, M., Wichmann, P., & Stoerig, P. (2001). Change blindness and time to consciousness. European Journal of Neuroscience, 14(10), 1719–1726. doi: 10.1046/j.0953-816x.2001.01785.CrossRefPubMedGoogle Scholar
  36. O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nature Neuroscience, 15(12), 1729–1735. doi: 10.1038/nn.3248.CrossRefPubMedGoogle Scholar
  37. O’Regan, J. K., Deubel, H., Clark, J. J., & Rensink, R. A. (2000). Picture changes during blinks: looking without seeing and seeing without looking. Visual Cognition, 7(1–3), 191–211. doi: 10.1080/135062800394766.Google Scholar
  38. O’Regan, J. K., Rensink, R. A., & Clark, J. J. (1999). Change blindness as a result of mudsplashes. Nature, 398(6722), 34. doi: 10.1038/17953.CrossRefPubMedGoogle Scholar
  39. Pliske, R. M., & Mutter, S. A. (1996). Age differences in the accuracy of confidence judgments. Experimental Aging Research, 22(2), 199–216. doi: 10.1080/03610739608254007.CrossRefPubMedGoogle Scholar
  40. Polich, J. (1996). Meta-analysis of P300 normative aging studies. Psychophysiology, 33(4), 334–353. doi: 10.1111/j.1469-8986.1996.tb01058.x.CrossRefPubMedGoogle Scholar
  41. Polich, J. (1997). On the relationship between EEG and P300: individual differences, aging, and ultradian rhythms. International Journal of Psychophysiology, 26(1–3), 299–317. doi: 10.1016/s0167-8760(97)00772-1.CrossRefPubMedGoogle Scholar
  42. Polich, J., & Heine, M. R. (1996). P300 topography and modality effects from a single-stimulus paradigm. Psychophysiology, 33(6), 747–752. doi: 10.1111/j.1469-8986.1996.tb02371.x.CrossRefPubMedGoogle Scholar
  43. Pringle, H. L., Irwin, D. E., Kramer, A. F., & Atchley, P. (2001). The role of attentional breadth in perceptual change detection. Psychonomic Bulletin and Review, 8(1), 89–95. doi: 10.3758/BF03196143.CrossRefPubMedGoogle Scholar
  44. Rensink, R. A. (2000a). Seeing, sensing, and scrutinizing. Vision Research, 40(10–12), 1469–1487. doi: 10.1016/s0042-6989(00)00003-1.CrossRefPubMedGoogle Scholar
  45. Rensink, R. A. (2000b). Visual search for change: a probe into the nature of attentional processing. Visual Cognition, 7(1–3), 345–376. doi: 10.1080/135062800394847.CrossRefGoogle Scholar
  46. Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: the need for attention to perceive changes in scenes. Psychological Science, 8(5), 368–373. doi: 10.1111/j.1467-9280.1997.tb00427.x.CrossRefGoogle Scholar
  47. Rizzo, M., Sparks, J., McEvoy, S., Viamonte, S., Kellison, I., & Vecera, S. P. (2009). Change blindness, aging, and cognition. Journal of Clinical and Experimental Neuropsychology, 31(2), 245–256. doi: 10.1080/13803390802279668.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schankin, A., & Wascher, E. (2007). Electrophysiological correlates of stimulus processing in change blindness. Experimental Brain Research, 183(1), 95–105. doi: 10.1007/s00221-007-1023-z.CrossRefPubMedGoogle Scholar
  49. Schankin, A., & Wascher, E. (2008). Unvoluntary attentional capture in change blindness. Psychophysiology, 45(5), 742–750. doi: 10.1111/j.1469-8986.2008.00685.x.CrossRefPubMedGoogle Scholar
  50. Simons, D. J. (1996). In sight, out of mind: when object representations fail. Psychological Science, 7(5), 301–305. doi: 10.1111/j.1467-9280.1996.tb00378.x.CrossRefGoogle Scholar
  51. Simons, D. J., & Levin, D. T. (1997). Change blindness. Trends in Cognitive Sciences, 7(1), 261–267. doi: 10.1016/s1364-6613(97)01080-2.CrossRefGoogle Scholar
  52. Simons, D. J., & Levin, D. T. (1998). Failure to detect changes to people during a real-world interaction. Psychonomic Bulletin and Review, 5(4), 644–649. doi: 10.3758/bf03208840.CrossRefGoogle Scholar
  53. Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150(3700), 1187–1188. doi: 10.1126/science.150.3700.1187.CrossRefPubMedGoogle Scholar
  54. Turatto, M., Angrillia, A., Mazza, V., & Driver, J. (2002). Looking without seeing the background change: electrophysiological correlates of change detection versus change blindness. Cognition, 84(1), B1–B10. doi: 10.1016/s0010-0277(02)00016-1.CrossRefPubMedGoogle Scholar
  55. Verleger, R. (1988). Event-related potentials and cognition: a critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences, 11(3), 343–356. doi: 10.1017/s0140525x00058015.CrossRefGoogle Scholar
  56. Verleger, R., Jaśkowski, P., & Wascher, E. (2005). Evidence for an integrative role of P3b in linking reaction to perception. Journal of Psychophysiology, 19(3), 165–181. doi: 10.1027/0269-8803.19.3.165.CrossRefGoogle Scholar
  57. Wascher, E., Schneider, D., Hoffmann, S., Beste, C., & Sänger, J. (2012). When compensation fails: attentional deficits in healthy ageing caused by visual distraction. Neuropsychologia, 50(14), 3185–3192. doi: 10.1016/j.neuropsychologia.2012.09.033.CrossRefPubMedGoogle Scholar
  58. Wiegand, I., Töllner, T., Dyrholm, M., Müller, H. J., Bundesen, C., & Finke, K. (2014). Neural correlates of age-related decline and compensation in visual attention capacity. Neurobiology of Aging, 35(9), 2161–2173. doi: 10.1016/j.neurobiolaging.2014.02.023.CrossRefPubMedGoogle Scholar
  59. Yu, S. X. (2010). Feature transitions with saccadic search: Size, color, and orientation are not alike. Resource document. Paper presented at the 23rd conference of advances in neural information processing (NIPS), Vancouver. http://papers.nips.cc/paper/4112-feature-transitions-with-saccadic-search-size-color-and-orientation-are-not-alike.pdf. Accessed 5 Sept 2014.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Katharina Bergmann
    • 1
  • Anna-Lena Schubert
    • 1
  • Dirk Hagemann
    • 1
  • Andrea Schankin
    • 1
    • 2
  1. 1.Institute of PsychologyUniversity of HeidelbergHeidelbergGermany
  2. 2.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations