Psychological Research

, Volume 80, Issue 2, pp 181–194 | Cite as

Does working memory training have to be adaptive?

Original Article

Abstract

This study tested the common assumption that, to be most effective, working memory (WM) training should be adaptive (i.e., task difficulty is adjusted to individual performance). Indirect evidence for this assumption stems from studies comparing adaptive training to a condition in which tasks are practiced on the easiest level of difficulty only [cf. Klingberg (Trends Cogn Sci 14:317–324, 2010)], thereby, however, confounding adaptivity and exposure to varying task difficulty. For a more direct test of this hypothesis, we randomly assigned 130 young adults to one of the three WM training procedures (adaptive, randomized, or self-selected change in training task difficulty) or to an active control group. Despite large performance increases in the trained WM tasks, we observed neither transfer to untrained structurally dissimilar WM tasks nor far transfer to reasoning. Surprisingly, neither training nor transfer effects were modulated by training procedure, indicating that exposure to varying levels of task difficulty is sufficient for inducing training gains.

References

  1. Arthur, W, Jr, & Day, D. V. (1994). Development of a short form for the Raven advanced progressive matrices test. Educational and Psychological Measurement, 54(2), 394–403.CrossRefGoogle Scholar
  2. Arthur, W, Jr, Tubre, T. C., Paul, D. S., & Sanchez-Ku, M. L. (1999). College-sample psychometric and normative data on a short form of the Raven advanced progressive matrices test. Journal of Psychoeducational Assessment, 17, 354–361.CrossRefGoogle Scholar
  3. Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2014). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic Bulletin and Review,. doi:10.3758/s13423-014-0699-x.Google Scholar
  4. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 290–412. doi:10.1016/j.jml.2007.12.005.CrossRefGoogle Scholar
  5. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language, 68, 255–278. doi:10.1016/j.jml.2012.11.001.CrossRefGoogle Scholar
  6. Bates, D. M. (2010). lme4: mixed-effects modeling with R. Retrieved from http://lme4.r-forge.r-project.org/book/.
  7. Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4 (Version 1.1–7).Google Scholar
  8. Bless, H., Wänke, M., Bohner, G., Fellhauer, R. F., & Schwarz, N. (1994). Need for cognition: eine Skala zur Erfassung von Engagement und Freude bei Denkaufgaben : need for cognition: a scale measuring engagement and happiness in cognitive tasks. Zeitschrift für Sozialpsychologie, 25, 147–154.Google Scholar
  9. Borkenau, P., & Ostendorf, F. (2008). NEO-Fünf-Faktoren-Inventar nach Costa und McCrae (NEO-FFI). Manual (2nd ed.). Göttingen: Hogrefe.Google Scholar
  10. Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59.CrossRefPubMedGoogle Scholar
  11. Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6(63), 1–7. doi:10.3389/fnhum.2012.00063.Google Scholar
  12. Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12–21. doi:10.1080/17470215808416249.CrossRefGoogle Scholar
  13. Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and Social Psychology, 42(1), 116–131. doi:10.1037/0022-3514.42.1.116.CrossRefGoogle Scholar
  14. Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199. doi:10.3758/PBR.17.2.193.CrossRefGoogle Scholar
  15. Chooi, W.-T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40, 531–542. doi:10.1016/j.intell.2012.07.004.CrossRefGoogle Scholar
  16. Colom, R., Quiroga, M. Á., Shih, P. C., Martínez-Molina, A., Román, F. J., Requena, L., & Ramírez, I. (2010). Improvement in working memory is not related to increased intelligence scores. Intelligence, 38, 497–505. doi:10.1016/j.intell.2010.06.008.CrossRefGoogle Scholar
  17. Colom, R., Román, F. J., Abad, F. J., Shih, P. C., Privado, J., Froufe, M., & Jaeggi, S. M. (2013). Adaptive n-back training does not improve fluid intelligence at the construct level: gains on individual tests suggest that training may enhance visuospatial processing. Intelligence, 41, 712–727. doi:10.1016/j.intell.2013.09.002.CrossRefGoogle Scholar
  18. Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: a methodological review and user’s guide. Psychonomic Bulletin and Review, 12(5), 739–786. doi:10.3758/BF03196772.CrossRefGoogle Scholar
  19. Costa, P. T., & McCrae, R. R. (1992). Revised NEO personality inventory (NEO PI-R) and NEO five factor inventory (NEO-FFI). Professional manual. Odessa: Psychological Assessment Resources.Google Scholar
  20. Cousineau, D. (2005). Confidence intervals in within-subjects designs: a simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.Google Scholar
  21. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.CrossRefGoogle Scholar
  22. Deci, E. L., & Ryan, R. M. (2015). Intrinsic Motivation Inventory. http://selfdeterminationtheory.org/questionnaires/10-questionnaires/50. Retrieved 13 June 2013.
  23. Dunning, D. L., Holmes, J., & Gathercole, S. E. (2013). Does working memory training lead to generalized improvements in children with low working memory? A randomized controlled trial. Developmental Science, 16(6), 915–925. doi:10.1111/desc.12068.PubMedCentralPubMedGoogle Scholar
  24. Dweck, C. S. (1999). Self-theories: their role in motivation, personality, and development. Philadelphia: Psychology Press.Google Scholar
  25. Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton: Educational Testing Service.Google Scholar
  26. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. doi:10.1037/0096-3445.128.3.309.CrossRefGoogle Scholar
  27. Gibson, B. S., Gondoli, D. M., Kronenberger, W. G., Johnson, A. C., Steeger, C. M., & Morrisey, R. A. (2013). Exploration of an adaptive training regimen that can target the secondary memory component of working memory capacity. Memory and Cognition, 41(5), 726–737. doi:10.3758/s13421-013-0295-8.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Green, S. C., Strobach, T., & Schubert, T. (2014). On methodological standards in training and transfer experiments. Psychological Research, 78(6), 756–772. doi:10.1007/s00426-013-0535-3.CrossRefPubMedGoogle Scholar
  29. Halekoh, U., & Højsgaard, S. (2014). A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models—the R package pbkrtest. Journal of Statistical Software, 59(9), 1–30.CrossRefGoogle Scholar
  30. Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24(12), 2409–2419. doi:10.1177/0956797613492984.CrossRefPubMedGoogle Scholar
  31. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833. doi:10.1073/pnas.0801268105.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2014). The role of individual differences in cognitive training and transfer. Memory and Cognition, 42(3), 464–480. doi:10.3758/s13421-013-0364-z.CrossRefPubMedGoogle Scholar
  33. Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence, 38(6), 625–635. doi:10.1016/j.intell.2010.09.001.CrossRefGoogle Scholar
  34. Karbach, J., Strobach, T., & Schubert, T. (2014). Adaptive working-memory training benefits reading, but not mathematics in middle childhood. Child Neuropsychology,. doi:10.1080/09297049.2014.899336.PubMedGoogle Scholar
  35. Karbach, J., & Verhaeghen, P. (2014). Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25(11), 2027–2037. doi:10.1177/0956797614548725.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324. doi:10.1016/j.tics.2010.05.002.CrossRefPubMedGoogle Scholar
  37. Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., & Westerberg, H. (2005). Computerized training of working memory in children with ADHD—a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186. doi:10.1097/00004583-200502000-00010.CrossRefPubMedGoogle Scholar
  38. Klumb, P. L. (2001). Knoten im Taschentuch: der Einsatz von Gedächtnishilfen im Alltag. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 33(1), 42–49. doi:10.1026//0049-8637.33.1.42.CrossRefGoogle Scholar
  39. Lampit, A., Hallock, H., & Valenzuela, M. (2014). Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLOS Medicine, 11(11), e1001756. doi:10.1371/journal.pmed.1001756.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Licini, C. (2014). Verbesserung der Lernfähigkeit durch gezieltes Arbeitsgedächtnistraining [Improvement of the Ability Learn Through Working Memory Training]. (Unpublished master’s thesis). University of Zurich, Zurich, Switzerland.Google Scholar
  41. Lövden, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659–676. doi:10.1037/a0020080.CrossRefPubMedGoogle Scholar
  42. Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. doi:10.1037/a0028228.PubMedGoogle Scholar
  43. Morey, R. D. (2008). Confidence intervals from normalized data: a correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4(2), 61–64.Google Scholar
  44. Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 18, 46–60. doi:10.3758/s13423-010-0034-0.CrossRefPubMedGoogle Scholar
  45. Noack, H., Lövden, M., & Schmiedek, F. (2014). On the validity and generality of transfer effects in cognitive training research. Psychological Research, 78(6), 773–789. doi:10.1007/s00426-014-0564-6.CrossRefPubMedGoogle Scholar
  46. Oberauer, K. (2005). Binding and inhibition in working memory: individual and age differences in short-term recognition. Journal of Experimental Psychology: General, 134(3), 368–387. doi:10.1037/0096-3445.134.3.368.CrossRefGoogle Scholar
  47. Oberauer, K. (2006). Is the focus of attention in working memory expanded through practice? Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(2), 197–214. doi:10.1037/0278-7393.32.2.197.CrossRefPubMedGoogle Scholar
  48. Oberauer, K. (2010). Declarative and procedural working memory: common principles, common capacity limits? Psychologica Belgica, 50(3&4), 277–308.CrossRefGoogle Scholar
  49. Oberauer, K., Süß, H.-M., Wilhelm, O., & Wittmann, W. W. (2003). The multiple faces of working memory: storage, processing, supervision, and coordination. Intelligence, 31, 167–193. doi:10.1016/S0160-2896(02)00115-0.CrossRefGoogle Scholar
  50. Oberauer, K., Süß, H.-M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36, 641–652. doi:10.1016/j.intell.2008.01.007.CrossRefGoogle Scholar
  51. R Core Team. (2014). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.
  52. Raven, J. C. (1990). Advanced progressive matrices: sets I, II. Oxford: Oxford Psychologists Press.Google Scholar
  53. Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., & Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379. doi:10.1037/a0029082.CrossRefGoogle Scholar
  54. Rheinberg, F., Vollmeyer, R., & Bruns, B. D. (2001). FAM: ein Fragebogen zur Erfassung aktueller Motivation in Lern- und Leistungssituationen. Diagnostica, 47(2), 57–66.CrossRefGoogle Scholar
  55. Salminen, T., Strobach, T., & Schubert, T. (2012). On the impacts of working memory training on executive functioning. Frontiers in Human Neuroscience,. doi:10.3389/fnhum.2012.00166.PubMedCentralPubMedGoogle Scholar
  56. Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217.CrossRefGoogle Scholar
  57. Schmiedek, F., Lövden, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study. Frontiers in Aging Neuroscience, 2(27), 1–10. doi:10.3389/fnagi.2010.00027.Google Scholar
  58. Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H.-M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136(3), 414–429. doi:10.1037/0096-3445.136.3.414.CrossRefGoogle Scholar
  59. Schweizer, S., Hampshire, A., & Dalgleish, T. (2011). Extending brain-training to the affective domain: increasing cognitive and affective executive control through emotional working memory training. PLoS One, 6(9), e24372. doi:10.1371/journal.pone.0024372.PubMedCentralCrossRefPubMedGoogle Scholar
  60. Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138(4), 628–654. doi:10.1037/a0027473.CrossRefPubMedGoogle Scholar
  61. Smith, G., Del Sala, S., Logie, R. H., & Maylor, E. A. (2000). Prospective and retrospective memory in normal ageing and dementia: a questionnaire study. Memory, 8(5), 311–321. doi:10.1080/09658210050117735.CrossRefPubMedGoogle Scholar
  62. Sprenger, A. M., Atkins, S. M., Bolger, D. J., Harbison, J. I., Novick, J. M., Chrabaszcz, J. S., & Dougherty, M. R. (2013). Training working memory: limits of transfer. Intelligence, 41, 638–663. doi:10.1016/j.intell.2013.07.013.CrossRefGoogle Scholar
  63. Stepankova, H., Lukavsky, J., Buschkuehl, M., Kopecek, M., Ripova, D., & Jaeggi, S. M. (2014). The malleability of working memory and visuospatial skills: a randomized controlled study in older adults. Developmental Psychology, 50(4), 1049–10559. doi:10.1037/a0034913.CrossRefPubMedGoogle Scholar
  64. Süß, H.-M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability—and a little bit more. Intelligence, 30, 261–288.CrossRefGoogle Scholar
  65. Thompson, T. W., Waskom, M. L., Garel, K.-L. A., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., & Gabrieli, J. D. E. (2013). Failure of working memory training to enhance cognition or intelligence. PLoS One, 8(5), e63614. doi:10.1371/journal.pone.0063614.PubMedCentralCrossRefPubMedGoogle Scholar
  66. von Bastian, C. C., Langer, N., Jäncke, L., & Oberauer, K. (2013a). Effects of working memory training in young and old adults. Memory and Cognition, 41(4), 611–624. doi:10.3758/s13421-012-0280-7.CrossRefGoogle Scholar
  67. von Bastian, C. C., Locher, A., & Ruflin, M. (2013b). Tatool: a Java-based open-source programming framework for psychological studies. Behavior Research Methods, 45(1), 108–115. doi:10.3758/s13428-012-0224-y.CrossRefGoogle Scholar
  68. von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 36–58. doi:10.1016/j.jml.2013.02.002.CrossRefGoogle Scholar
  69. von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: a review. Psychological Research, 78(6), 803–820. doi:10.1007/s00426-013-0524-6.CrossRefGoogle Scholar
  70. Wilhelm, O., Hildebrandt, A., & Oberauer, K. (2013). What is working memory capacity, and how can we measure it? Frontiers in Psychology, 4(433), 1–22. doi:10.3389/fpsyg.2013.00433.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PsychologyUniversity Research Priority Program “Dynamics of Healthy Aging”, University of ZurichZurichSwitzerland
  2. 2.Department of Psychology, International Normal Aging and Plasticity Imaging Center (INAPIC)University Research Priority Program “Dynamics of Healthy Aging”, University of ZurichZurichSwitzerland
  3. 3.Department of Psychology and NeuroscienceUniversity of Colorado Boulder, UCB 345BoulderUSA

Personalised recommendations