Psychological Research

, Volume 80, Issue 1, pp 1–15 | Cite as

A review of ideomotor approaches to perception, cognition, action, and language: advancing a cultural recycling hypothesis

  • Arnaud BadetsEmail author
  • Iring Koch
  • Andrea M. Philipp


The term “cultural recycling” derives from the neuronal recycling hypothesis, which suggests that representations of cultural inventions like written words, Arabic numbers, or tools can occupy brain areas dedicated to other functions. In the present selective review article, we propose a recycling hypothesis for the ideomotor mechanism. The ideomotor approach assumes that motor actions are controlled by the anticipation of the expected perceptual consequences that they aim to generate in the environment. Arguably, such action–perception mechanisms contribute to motor behaviour for human and non-human animals since millions of years. However, recent empirical studies suggest that the ideomotor mechanism can also contribute to word processing, number representation, and arithmetic. For instance, it has been shown that the anticipatory simulation of abstract semantics, like the numerical quantitative value of three items can prime processing of the associated Arabic number “3”. Arabic numbers, words, or tools represent cultural inventions, so that, from a theoretical perspective, we suggest an ideomotor recycling hypothesis for the interaction with such artefacts. In this view, the ideomotor mechanism spreads its influence to other functions beyond motor control, and is recycled to flexibly adapt different human behaviours towards dealing with more abstract concepts.


Compatibility Effect Colour Word Arabic Number Incompatible Condition Cultural Invention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, M. L. (2010). Neural reuse: a fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33, 245–313.PubMedCrossRefGoogle Scholar
  2. Anderson, M. L., & Penner-Wilger, M. (2013). Neural reuse in the evolution and development of the brain: evidence for developmental homology? Developmental Psychobiology, 55, 42–51.PubMedCrossRefGoogle Scholar
  3. Andres, M., Davare, M., Pesenti, M., Olivier, E., & Seron, X. (2004). Number magnitude and grip aperture interaction. NeuroReport, 15, 2773–2777.PubMedGoogle Scholar
  4. Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. NeuroImage, 62, 1520–1528.PubMedCrossRefGoogle Scholar
  5. Andres, M., Olivier, E., & Badets, A. (2008). Action, words and numbers: a motor contribution to semantic processing? Current Directions in Psychological Science, 17(5), 313–317.CrossRefGoogle Scholar
  6. Badets, A. (2013). Semantic sides of three-dimensional space representation. Behavioral and Brain Sciences, 36, 543.PubMedCrossRefGoogle Scholar
  7. Badets, A., Andres, M., Di Luca, S., & Pesenti, M. (2007). Number magnitude potentiates action judgements. Experimental Brain Research, 180, 525–534.PubMedCrossRefGoogle Scholar
  8. Badets, A., Koch, I., & Toussaint, L. (2013). Role of an ideomotor mechanism in number processing. Experimental Psychology, 60, 34–43.PubMedCrossRefGoogle Scholar
  9. Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115, 46–53.PubMedCrossRefGoogle Scholar
  10. Badets, A., & Pesenti, M. (2011). Finger–number interaction: an ideomotor account. Experimental Psychology, 58, 287–292.PubMedCrossRefGoogle Scholar
  11. Badets, A., Pesenti, M., & Olivier, E. (2010). Response–effect compatibility of finger-numeral configurations in arithmetical context. The Quarterly Journal of Experimental Psychology, 63, 16–22.PubMedCrossRefGoogle Scholar
  12. Baroody, A. J. (1987). Children’s mathematical thinking: a developmental framework for preschool, primary and special education teachers. New York, NY: Teacher’s College Press.Google Scholar
  13. Beck, B. B. (1980). Animal tool use behavior: The use and manufacture of tools by animals. New York: Garland STPM Press.Google Scholar
  14. Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17, 89–98.PubMedCrossRefGoogle Scholar
  15. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Binkofski, F., Buccino, G., Posse, S., Seitz, R. J., Rizzolatti, G., & Freund, H. (1999). A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. European Journal of Neuroscience, 11, 3276–3286.PubMedCrossRefGoogle Scholar
  17. Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B, 364, 1831–1840.CrossRefGoogle Scholar
  18. Butterworth, B. (1999). The mathematical brain. Macmillan.Google Scholar
  19. Caligiore, D., & Fischer, M. H. (2013). Vision, action and language unified through embodiment. Psychological Research, 77, 1–6.PubMedCrossRefGoogle Scholar
  20. Chiou, R. Y., Chang, E. C., Tzeng, O. J. L., & Wu, D. H. (2009). The common magnitude code underlying numerical and size processing for action but not for perception. Experimental Brain Research, 194, 553–562.PubMedCrossRefGoogle Scholar
  21. Cisek, P., & Kalaska, J. F. (2001). Common codes for situated interaction. Behavioral and Brain Sciences, 24, 883–884.CrossRefGoogle Scholar
  22. Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: the case for the visual word form area. NeuroImage, 22, 466–476.PubMedCrossRefGoogle Scholar
  23. Connolly, J. D., Andersen, R. A., & Goodale, M. A. (2003). FMRI evidence for a ‘‘parietal reach region” in the human brain. Experimental Brain Research, 153, 140–145.PubMedCrossRefGoogle Scholar
  24. Corballis, M. C. (2013). Mental time travel: a case for evolutionary continuity. Trends in Cognitive Sciences, 17, 5–6.PubMedCrossRefGoogle Scholar
  25. Culham, J. C., Danckert, S. L., DeSouza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153, 180–189.PubMedCrossRefGoogle Scholar
  26. Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.CrossRefGoogle Scholar
  27. Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The ‘‘neuronal recycling’’ hypothesis. In S. Dehaene, J. R. Duhamel, M. Hauser, & G. Rizzolatti (Eds.), From monkey brain to human brain (pp. 133–157). Cambridge, MA: MIT Press.Google Scholar
  28. Dehaene, S. (2007). Les neurones de la lecture. Odile Jacob.Google Scholar
  29. Dehaene, S. (2009). Reading in the brain. Penguin Viking.Google Scholar
  30. Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56, 384–398.PubMedCrossRefGoogle Scholar
  31. Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15, 254–262.PubMedCrossRefGoogle Scholar
  32. Dehaene, S., Tzourio, N., Frak, F., Raynaud, L., Mehler, J., & Mazoyer, B. (1996). Cerebral activations during number multiplication and comparison: a PET study. Neuropsychologia, 34, 1097–1106.PubMedCrossRefGoogle Scholar
  33. Di Luca, S., Granà, A., Semenza, C., Seron, X., & Pesenti, M. (2006). Finger-digit compatibility in Arabic numeral processing. The Quarterly Journal of Experimental Psychology, 59, 1648–1663.PubMedCrossRefGoogle Scholar
  34. Di Luca, S., Lefèvre, N., & Pesenti, M. (2010). Place and summation coding for canonical and non-canonical finger numeral representations. Cognition, 117, 95–100.PubMedCrossRefGoogle Scholar
  35. Domahs, F., Krinzinger, H., & Willmes, K. (2008). Mind the gap between both hands: evidence for internal finger-based number representations in children’s mental calculation. Cortex, 44, 359–367.PubMedCrossRefGoogle Scholar
  36. Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27, 229–240.PubMedGoogle Scholar
  37. Fischer, M. H., & Brugger, P. (2011). When digits help digits: spatial-numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2, 260. doi: 10.3389/fpsyg.2011.00260.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555–556. doi: 10.1038/nn1066.
  39. Gallese, V. (2008). Mirror neurons and the social nature of language: the neural exploitation hypothesis. Social Neuroscience, 3, 317–333.PubMedCrossRefGoogle Scholar
  40. Gallese, V., & Lakoff, G. (2005). The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479.PubMedCrossRefGoogle Scholar
  41. Garrod, S., & Pickering, M. J. (2004). Why is conversation so easy? Trends in Cognitive Sciences, 8, 8–11.PubMedCrossRefGoogle Scholar
  42. Gibson, K. R. (1993). Generative interplay between technical capacities, social relations, imitation and cognition. In K. R. Gibson & T. Ingold (Eds.), Tools, language and cognition in human evolution (pp. 251–269). New York: Cambridge University Press.Google Scholar
  43. Gracia-Bafalluy, M., & Noël, M. P. (2008). Does finger training increase young children’s numerical performance? Cortex, 44, 368–375.PubMedCrossRefGoogle Scholar
  44. Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychological Review, 77, 73–99.PubMedCrossRefGoogle Scholar
  45. Hamilton, A. F., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. The Journal of Neuroscience, 26, 1133–1137.PubMedCrossRefGoogle Scholar
  46. Hartsuiker, R. J., & Pickering, M. J. (2001). A common framework for language comprehension and language production? Behavioral and Brain Sciences, 24, 887–888.Google Scholar
  47. Herwig, A., & Waszak, F. (2009). Intention and attention in ideomotor learning. Quarterly Journal of Experimental Psychology, 62(2), 219–227.CrossRefGoogle Scholar
  48. Hommel, B., Alonso, D., & Fuentes, L. J. (2003). Acquisition and generalization of action effects. Visual Cognition, 10, 965–986.CrossRefGoogle Scholar
  49. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioural and Brain Sciences, 24, 849–878.CrossRefGoogle Scholar
  50. Hubbard, J., Gazzaley, A., & Morsella, E. (2011). Traditional response interference from anticipated action outcomes: a response-effect compatibility paradigm. Acta Psychologia, 138, 106–110.CrossRefGoogle Scholar
  51. Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in the parietal cortex. Nature Reviews Neuroscience, 6, 435–448.PubMedCrossRefGoogle Scholar
  52. Hurley, S. L. (2008). The shared circuits model (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences, 31, 1–58.PubMedCrossRefGoogle Scholar
  53. James, W. (1890). The principles of psychology (Vol. 2). New York: Dover Publications.CrossRefGoogle Scholar
  54. Kashima, Y., Bekkering, H., & Kashima, E. S. (2013). Communicative intentions can modulate the linguistic perception-action link. Behavioral and Brain Sciences, 36, 33–34.CrossRefGoogle Scholar
  55. Keller, P. E., & Koch, I. (2006). Exogenous and endogenous response priming with auditory stimuli. Advances in Cognitive Psychology, 2, 269–276.CrossRefGoogle Scholar
  56. Klein, E., Moeller, K., Willmes, K., Nuerk, H. C., & Domahs, F. (2011). The influence of implicit hand-based representations on mental arithmetic. Frontiers in Psychology, 2, 197. doi: 10.3389/fpsyg.2011.00197.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Koch, I., Keller, P., & Prinz, W. (2004). The ideomotor approach to action control: implications for skilled performance. International Journal of Sport and Exercise Psychology, 2, 362–375.CrossRefGoogle Scholar
  58. Koch, I., & Kunde, W. (2002). Verbal response–effect compatibility. Memory and Cognition, 30, 1297–1303.PubMedCrossRefGoogle Scholar
  59. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility–a model and taxonomy. Psychological Review, 97, 253–270.PubMedCrossRefGoogle Scholar
  60. Kunde, W. (2001). Response–effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27, 387–394.PubMedGoogle Scholar
  61. Kunde, W., Elsner, K., & Kiesel, A. (2007a). No anticipation–no action: the role of anticipation in action and perception. Cognitive Processing, 8, 71–78.PubMedCrossRefGoogle Scholar
  62. Kunde, W., Koch, I., & Hoffmann, J. (2004). Anticipated action effects affect the selection, initiation, and execution of actions. Quarterly Journal of Experimental Psychology, 57A, 87–106.CrossRefGoogle Scholar
  63. Kunde, W., Müsseler, J., & Heuer, H. (2007b). Spatial compatibility effects with tool use. Human Factors, 49, 661–670.PubMedCrossRefGoogle Scholar
  64. Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33, 1400–1409.PubMedGoogle Scholar
  65. Massen, C., & Prinz, W. (2007). Activation of actions rules in action observation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33, 1118–1130.PubMedCrossRefGoogle Scholar
  66. Massen, C., & Prinz, W. (2009). Movements, actions and tool-use actions: an ideomotor approach to imitation. Philosophical Transactions of the Royal Society of London. Series B, 364, 2349–2358.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Meck, W. H. (1985). Postreinforcement signal-processing. Journal of Experimental Psychology: Animal Behavior Processes, 11, 52–70.PubMedGoogle Scholar
  68. Melcher, T., Weidema, M., Eenhuistra, R. M., Hommel, B., & Gruber, O. (2008). The neural substrate of the ideomotor principle: an event-related fMRI analysis. NeuroImage, 39, 1274–1288.PubMedCrossRefGoogle Scholar
  69. Meteyard, L., Rodriguez Cuadrado, S., Bahrami, B., & Vigliocco, G. (2012). Coming of age: a review of embodiment and the neuroscience of semantics. Cortex, 48, 88–804.CrossRefGoogle Scholar
  70. Moretto, G., & di Pellegrino, G. (2008). Grasping numbers. Experimental Brain Research, 188, 505–515.PubMedCrossRefGoogle Scholar
  71. Nattkemper, D., Ziessler, M., & Frensch, P. A. (2010). Binding in voluntary action control. Neuroscience and Biobehavioral Reviews, 34, 1092–1101.PubMedCrossRefGoogle Scholar
  72. Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 1708–1711.PubMedCrossRefGoogle Scholar
  73. Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences of the United States of America, 101, 7457–7462.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Osiurak, F. (2014). What neuropsychology tells us about human tool use? The four constraints theory (4CT): mechanics, Space, Time and Effort. Neuropsychology Review, 24, 88–115.PubMedCrossRefGoogle Scholar
  75. Osiurak, F., & Badets, A. (2014). Pliers, not fingers: tool-action effect in a motor intention paradigm. Cognition, 130, 66–73.PubMedCrossRefGoogle Scholar
  76. Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrate of Arabic number processing, numerical comparison and simple addition: a PET study. Journal of Cognitive Neuroscience, 121, 461–479.CrossRefGoogle Scholar
  77. Pfister, R., Janczyk, M., Gressmann, M., Fournier, L. R., & Kunde, W. (2014). Good vibrations? Vibrotactile self-stimulation reveals anticipation of body-related action effects in motor control. Experimental Brain Research, 232, 847–854.PubMedCrossRefGoogle Scholar
  78. Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and brain sciences, 36, 329-347. doi: 10.1017/S0140525X12001495.
  79. Press, C. (2011). Action observation and robotic agents: learning and anthropomorphism. Neuroscience and Biobehavioral Reviews, 35, 1410–1418.PubMedCrossRefGoogle Scholar
  80. Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. NeuroImage, 19, 473–481.PubMedCrossRefGoogle Scholar
  81. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.CrossRefGoogle Scholar
  82. Prinz, W., Aschersleben, G., & Koch, I. (2009). Cognition and action. In E. Morsella, J. Bargh, & P. M. Gollwitzer (Eds.), The Psychology of Action (Vol. 2, pp. 35–71)., Mechanisms of Human Action Oxford: Oxford University Press.Google Scholar
  83. Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. The Journal of Neuroscience, 16, 5205–5215.PubMedGoogle Scholar
  84. Raos, V., Umiltá, M. A., Murata, A., Fogassi, L., & Gallese, V. (2006). Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. Journal of Neurophysiology, 95, 709–729.PubMedCrossRefGoogle Scholar
  85. Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15, 1779–1790.PubMedCrossRefGoogle Scholar
  86. Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neuroscience, 21, 188–194.CrossRefGoogle Scholar
  87. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRefGoogle Scholar
  88. Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264–274.PubMedCrossRefGoogle Scholar
  89. Sawamura, H., Shima, K., & Tanji, J. (2002). Numerical representation for action in the parietal cortex of the monkey. Nature, 415, 918–922.PubMedCrossRefGoogle Scholar
  90. Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349–355.PubMedCrossRefGoogle Scholar
  91. Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136, 943–974.PubMedCrossRefGoogle Scholar
  92. Stock, A., & Stock, C. (2004). A short history of ideo-motor action. Psychological Research, 68, 176–188.PubMedCrossRefGoogle Scholar
  93. Sutter, C., Ladwig, S., Oehl, M., & Müsseler, J. (2012). Age effects on controlling tools with sensorimotor transformations. Frontiers in Psychology, 3, 573. doi: 10.3389/fpsyg.2012.00573.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Thompson, R. F., Mayers, K. S., Robertson, R. T., & Patterson, C. J. (1970). Number coding in association cortex of the cat. Science, 168, 271–273.PubMedCrossRefGoogle Scholar
  95. Umiltà, M., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., et al. (2008). How pliers become fingers in the monkey motor system. Proceedings of the National Academy of Science, 105, 2209–2213.CrossRefGoogle Scholar
  96. Umiltà, C., Priftis, K., & Zorzi, M. (2009). The spatial representation of numbers: evidence from neglect and pseudoneglect. Experimental Brain Research, 192, 561–569.PubMedCrossRefGoogle Scholar
  97. Vigneau, M., Jobard, G., Mazoyer, B., & Tzourio-Mazoyer, N. (2005). Word and non-word reading: what role for the visual word form area? NeuroImage, 27, 694–705.PubMedCrossRefGoogle Scholar
  98. Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Science, 7, 483–488.CrossRefGoogle Scholar
  99. Waszak, F., Cardoso-Leite, P., & Hughes, G. (2012). Action effect anticipation: neurophysiological basis and functional consequences. Neuroscience and Biobehavioral Reviews, 36, 943–959.PubMedCrossRefGoogle Scholar
  100. Waszak, F., Wascher, E., Keller, P., Koch, I., Aschersleben, G., Rosenbaum, D. A., & Prinz, W. (2005). Intention-based and stimulus-based mechanisms in action selection. Experimental Brain Research, 162, 346–356.PubMedCrossRefGoogle Scholar
  101. Wolpert, D. M., Ghahramani, Z., & Flanagan, J. R. (2001). Perspectives and problems in motor learning. Trends in Cognitive Sciences, 5, 487–494.PubMedCrossRefGoogle Scholar
  102. Wood, G., Nuerk, H. C., Willmes, K., & Fischer, M. H. (2008). On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychology Science Quarterly, 50, 489–525.Google Scholar
  103. Ziessler, M., Nattkemper, D., & Frensch, P. A. (2004). The role of anticipation and intention in the learning of effects of self-performed actions. Psychological Research, 68, 163–175.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Centre de Recherches sur la Cognition et l’Apprentissage, Centre National de la Recherche Scientifique (CNRS), UMR-7295, Maison des Sciences de l’Homme et de la SociétéPoitiersFrance
  2. 2.Institute of PsychologyRWTH Aachen UniversityAachenGermany

Personalised recommendations