Psychological Research

, Volume 80, Issue 1, pp 34–54 | Cite as

Bimanual force control: cooperation and interference?

  • Deanna M. Kennedy
  • Jason B. Boyle
  • Chaoyi Wang
  • Charles H. Shea
Original Article


Three experiments were designed to determine the level of cooperation or interference observed from the forces generated in one limb on the forces exhibited by the contralateral limb when one or both limbs were producing a constant force (Experiment 1), one limb was producing a dynamic force while the other limb was producing a constant force (Experiment 2), and both limbs were producing dynamic force patterns (Experiment 3). The results for both Experiments 1 and 2 showed relatively strong positive time series cross correlations between the left and right limb forces indicating increases or decreases in the forces generated by one limb resulted in corresponding changes in the forces produced by the homologous muscles of the contralateral limb. Experiment 3 required participants to coordinate 1:1 and 1:2 rhythmical bimanual force production tasks when provided Lissajous feedback. The results indicated very effective performance of both bimanual coordination patterns. However, identifiable influences of right limb forces on the left limb force time series were observed in the 1:2 coordination pattern but not in the 1:1 pattern. The results of all three experiments support the notion that neural crosstalk is partially responsible for the stabilities and instabilities associated with bimanual coordination.


Coordination Pattern Contralateral Limb Bimanual Coordination Left Limb Bimanual Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by student research grants from the Huffines Institute and College of Education and Human Development, Texas A&M University to D. M. Kennedy.


  1. Aramaki, Y., Honda, M., Okada, T., & Sadato, N. (2006). Neural correlates of the spontaneous phase transition during bimanual coordination. Cerebral Cortex, 16, 1338–1348.PubMedCrossRefGoogle Scholar
  2. Aramaki, Y., Osu, R., & Sadato, N. (2010). Resource-demanding versus cost-effective bimanual interaction in the brain. Experimental Brain Research, 203, 407–418.PubMedCrossRefGoogle Scholar
  3. Armatas, C. A., & Summers, J. J. (2001). The influence of task characteristics on the intermanual asymmetry of motor overflow. Journal of Clinical Experimental Neuropsycholology, 23, 557–567.CrossRefGoogle Scholar
  4. Armatas, C. A., Summers, J. J., & Bradshaw, J. L. (1996). Handedness and performance variability as factors influencing mirror movement occurrence. Journal of Clinical Experimental Neuropsychology, 18, 823–835.PubMedCrossRefGoogle Scholar
  5. Barral, J., De Pretto, M., Debû, B., & Hauert, C. A. (2010). Activation and inhibition of bimanual movements in school-aged children. Human Physiology, 36, 47–57.CrossRefGoogle Scholar
  6. Barral, J., Debû, B., & Rival, C. (2006). Developmental changes in unimanual and bimanual aiming movements. Developmental Neuropsycholgy, 29, 415–429.CrossRefGoogle Scholar
  7. Beets, I. A. M, Gooijers, J., Boisgontier, M. P., Pauwels, L., Coxon, J. P., Wittenberg, G., & Swinnen, S. P. (2014). Reduced neural differentiation between feedback conditions after bimanual coordination with and without augmented feedback. Cerebral Cortex. doi: 10.1093/cercor/bhu005
  8. Boyles, J., Panzer, S., & Shea, C. H. (2012). Increasingly complex bimanual multi-frequency coordination patterns are equally easy to perform with on-line relative velocity feedback. Experimental Brain Research, 216, 515–525.PubMedCrossRefGoogle Scholar
  9. Buchanan, J. J., Park, J. H., & Shea, C. H. (2006). Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action. Experimental Brain Research, 175, 710–725.PubMedCrossRefGoogle Scholar
  10. Buchanan, J. J., & Ryu, Y. U. (2012). Scaling movement amplitude: adaptation of timing and amplitude control in a bimanual task. Journal of Motor Behavior, 44, 135–147.PubMedCrossRefGoogle Scholar
  11. Byblow, W. D., Bysouth-Young, D., Summers, J. J., & Carson, R. G. (1998). Performance asymmetries and coupling dynamics in the acquisition of multifrequency bimanual coordination. Psychologoical Research, 61, 56–70.CrossRefGoogle Scholar
  12. Byblow, W. D., & Goodman, D. (1994). Performance asymmetries in multifrequency coordination. Human Movement Science, 13, 147–174.CrossRefGoogle Scholar
  13. Cardoso de Oliveira, S. (2002). The neuronal basis of bimanual coordination: recent neurophysiological evidence and functional models. Acta Psychologica, 110, 139–159.PubMedCrossRefGoogle Scholar
  14. Carson, R. G., Byblow, W. D., Abernethy, B., & Summers, J. J. (1996). The contribution of inherent and incidental constraints to intentional switching between patterns of bimanual coordination. Human Movement Science, 15, 565–589.CrossRefGoogle Scholar
  15. Carson, R. G., Riek, C. J., Smethurst, J. F., Lison Parraga, J. F., & Byblow, W. D. (2000). Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination. Experimental Brain Research, 131, 196–214.PubMedCrossRefGoogle Scholar
  16. Cattaert, D., Semjen, A., & Summers, J. J. (1999). Simulating a neural cross-talk model for between-hand interference during bimanual circle drawing. Biological Cybernetics, 81, 343–358.PubMedCrossRefGoogle Scholar
  17. Cincotta, M., Giovannelli, F., Borgheresi, A., Balestrieri, F., Vanni, P., Ragazzoni, A., & Ziemann, U. (2006). Surface electromyography shows increased mirroring in Parkinson’s disease patients without overt mirror movements. Movement Disorders, 21, 1461–1465.PubMedCrossRefGoogle Scholar
  18. Cohen, L. (1971). Synchronous bimanual movements performed by homologous and non-homologous muscles. Perceptual Motor Skills, 32, 639–644.PubMedCrossRefGoogle Scholar
  19. Deutsch, D. (1983). The generation of two isochronous sequences in parallel. Perception and Psychophysics, 34, 331–337.PubMedCrossRefGoogle Scholar
  20. Diedrichsen, J., Hazeltine, E., Nurss, W. K., & Ivry, R. B. (2003). The role of the corpus callosum in the coupling of bimanual isometric force pulses. Journal of Neurophysiology, 4, 2409–2418.CrossRefGoogle Scholar
  21. Franz, E. A., Eliassen, J. C., Ivry, R. B., & Gazzaniga, M. S. (1996). Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients. Psychological Science, 7, 306–310.CrossRefGoogle Scholar
  22. Guiard, Y. (1987). Asymmetric division of labor in human skilled bimanual action: the kinematic chain as a model. Journal of Motor Behavior, 19, 486–517.PubMedCrossRefGoogle Scholar
  23. Guiard, Y. (1993). On Fitts’s and Hooke’s laws: simple harmonic movement in upper-limb cyclical aiming. Acta Psychologica, 82, 139–159.PubMedCrossRefGoogle Scholar
  24. Guiard, Y. (1997). Fitts’ law in the discrete vs cyclical paradigm. Human Movement Science, 16, 97–131.CrossRefGoogle Scholar
  25. Hessler, E. E., Gonzales, L. M., & Amazeen, P. G. (2010). Displays that facilitate performance of multifrequency ratios during motor-respiratory coordination. Acta Psychologica, 133, 96–105.PubMedCrossRefGoogle Scholar
  26. Heuer, H., Kleinsorge, T., Spijkers, W., & Steglich, W. (2001). Static and pha-sic cross-talk effects in discrete bimanual reversal movements. Journal of Motor Behavior, 33, 67–85.PubMedCrossRefGoogle Scholar
  27. Heuer, H., Spijkers, W., Steglich, C., & Kleinsorge, T. (2002). Parametric coupling and generalized decoupling revealed by concurrent and successive isometric contractions of distal muscles. Acta Psychologica, 111, 205–242.PubMedCrossRefGoogle Scholar
  28. Hill, A. V. (1970). First and last experiments in muscle mechanics. Cambridge: Cambridge University Press.Google Scholar
  29. Houweling, S., Beek, P. J., & Daffertshofer, A. (2010). Spectral changes of interhemispheric crosstalk during movement instabilities. Cerebral Cortex, 20, 2605–2613.PubMedCrossRefGoogle Scholar
  30. Hu, X., Loncharich, M., & Newell, K. M. (2011). Visual information interacts with neuromuscular factors in the coordination bimanual isometric force. Experimental Brain Research, 209, 129–138.PubMedCrossRefGoogle Scholar
  31. Hu, X., & Newell, K. M. (2011a). Adaption to bimanual asymmetric weights in isometric force coordination. Neuroscience Letters, 490, 121–125.PubMedCrossRefGoogle Scholar
  32. Hu, X., & Newell, K. M. (2011b). Visual information gain and task asymmetry interact in bimanual force coordination and control. Experimental Brain Research, 212, 497–504.PubMedCrossRefGoogle Scholar
  33. Kagerer, F. A., Summers, J. J., & Semjen, A. (2003). Instabilities during antiphase bimanual movements: are ipsilateral pathways involved? Experimental Brain Research, 151, 489–500.PubMedCrossRefGoogle Scholar
  34. Kasuga, S., & Nozaki, D. (2011). Cross talk in implicit assignment of error information during bimanual visuomotor learning. Journal of Neurophysiology, 106, 1218–1226.PubMedCrossRefGoogle Scholar
  35. Kelso, J. A. S. (1995). Dynamic patterns: the self-organization of the brain and behavior. Cambridge: MIT Press.Google Scholar
  36. Kelso, J. A. S., Scholz, J. P., & Schoner, G. (1986). Nonequilibrium phase-transitions in coordinated biological motion; critical fluctuations. Physics Letters A, 118, 279–284.CrossRefGoogle Scholar
  37. Kennedy, D. M., Boyle, J. B., Rhee, J., & Shea, C. H. (2014). Rhythmical bimanual force production: homologous and non-homologous muscles. Experimental Brain Research. doi: 10.1007/s00221-014-4102-y
  38. Kennedy, D. M., Wang, C., & Shea, C. H. (2013). Reacting while moving: influence of right limb movement on left limb reaction. Experimental Brain Research, 230, 143–152.PubMedCrossRefGoogle Scholar
  39. Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2009). Bimanual 1:1 with 90 degrees continuous relative phase: difficult or easy. Experimental Brain Research, 193, 129–136.PubMedCrossRefGoogle Scholar
  40. Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2010a). Impossible is nothing: 5:3 and 4:3 multi-frequency bimanual coordination. Experimental Brain Research, 201, 249–259.PubMedCrossRefGoogle Scholar
  41. Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2010b). Perceptual and attentional influences on continuous 2:1 and 3:2 multi-frequency bimanual coordination. Journal of Experimental Psychology: Human Perception and Performance, 36, 936–954.PubMedGoogle Scholar
  42. Kovacs, A. J., & Shea, C. H. (2010). Amplitude differences, spatial assimilation, and integrated feedback in bimanual coordination. Experimental Brain Research, 202, 519–525.PubMedCrossRefGoogle Scholar
  43. Kovacs, A. J., & Shea, C. H. (2011). The learning of 90 degrees continuous relative phase with and without Lissajous feedback: external and internally generated bimanual coordination. Acta Psychologica, 136, 311–320.PubMedCrossRefGoogle Scholar
  44. Krishnan, V., & Jaric, S. (2010). Effects of task complexity on coordination of inter-limb and within-limb forces in static bimanual manipulation. Motor Control, 230, 528–544.Google Scholar
  45. Latash, M. L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor Control, 14, 294–322.PubMedPubMedCentralGoogle Scholar
  46. Latash, M. L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research, 217, 1–5.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Levin, O., Suy, E., Huybrechts, J., Vangheluwe, S., & Swinnen, S. P. (2004). Bimanual coordination involving homologous and heterologous joint combinations: when lower stability is associated with higher flexibility. Behavioral Brain Research, 152, 437–445.CrossRefGoogle Scholar
  48. Maki, Y., Wong, K. F. K., Sugiura, M., Ozaki, T., & Sadato, N. (2008). Asymmetric control mechanisms of bimanual coordination: an application of directed connectivity analysis to kinematic and functional MRI data. Neuroimage, 42, 1295–1304.PubMedCrossRefGoogle Scholar
  49. Marteniuk, R. G., MacKenzie, C. L., & Baba, D. M. (1984). Bimanual movement control: information processing and interaction effects. Quarterly Journal of Experimental Psychology, 37, 335–365.CrossRefGoogle Scholar
  50. Monno, A., Chardenon, A., Temprado, J. J., Zanone, P. G., & Laurent, M. (2000). Effects of attention on phase transitions between bimanual coordination patterns: a behavioral and cost analysis in humans. Neuroscience Letters, 283, 93–96.PubMedCrossRefGoogle Scholar
  51. Murian, A., Deschamps, T., & Temprado, J. J. (2008). Effects of force production and trial duration on bimanual performance and attentional demands in a rhythmic coordination task. Motor Control, 12, 21–37.PubMedGoogle Scholar
  52. Park, S., Dijkstra, T. M. H., & Sternad, D. (2013). Learning to never forget—time scales and specificity of long-term memory of a motor skill. Frontiers in Computational Neuroscience, 7, 1–13.CrossRefGoogle Scholar
  53. Peper, C. E., Beek, P. J., & van Wieringen, P. C. W. (1995a). Coupling strength in tapping a 2/3 polyrhythm. Human Movement Science, 14, 217–245.CrossRefGoogle Scholar
  54. Peper, C. E., Beek, P. J., & van Wieringen, P. C. W. (1995b). Frequency-induced phase-transitions in bimanual tapping. Biological Cybernetics, 73, 301–309.PubMedCrossRefGoogle Scholar
  55. Peper, C. E., Beek, P. J., & Vanwieringen, P. C. W. (1995c). Multifrequency coordination in bimanual tapping—asymmetrical coupling and signs of supercriticality. Journal of Experimental Psychology-Human Perception and Performance, 21, 1117–1138.CrossRefGoogle Scholar
  56. Puttemans, V., Wenderoth, N., & Swinnen, S. P. (2005). Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticity. The Journal of Neuroscience, 25, 4270–4278.PubMedCrossRefGoogle Scholar
  57. Ridderikhoff, A., Peper, C. L., & Beek, P. J. (2005). Unraveling interlimb interactions underlying bimanual coordination. Journal Neurophysiology, 94, 3112–3125.PubMedCrossRefGoogle Scholar
  58. Riek, S., Carson, R. G., & Byblow, W. D. (1992). Spatial and muscular dependencies in bimanual coordination. Journal of Human Movement Studies, 23, 251–265.Google Scholar
  59. Sainburg, R. L. (2010). Lateralization of goal-directed movement. Vision and goal-directed movement (pp. 219–288). Champaign: Human Kinetics.Google Scholar
  60. Scholz, J. P., & Kelso, J. A. S. (1989). A quantitative approach to understanding the formation and change of coordinated movement patterns. Journal of Motor Behavior, 21, 122–144.PubMedCrossRefGoogle Scholar
  61. Semjen, A., & Summers, J. J. (2002). Timing goals in bimanual coordination. Quarterly Journal of Experimental Psychology A, Human Experimental Psychology, 55, 155–171.CrossRefGoogle Scholar
  62. Semjen, A., Summers, J. J., & Cattaert, D. (1995). Hand coordination in bimanual circle drawing. Journal of Experimental Psychology-Human Perception and Performance, 21, 1139–1157.CrossRefGoogle Scholar
  63. Serrien, D. (2009). Interactions between new and pre-existing dynamics in bimanual movement control. Experimental Brain Research, 197, 269–278.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Serrien, D., & Swinnen, S. P. (1997). Coordination constraints induced by effector combination under isofrequency and multifrequency conditions. Journal of Experimental Psychology-Human Perception and Performance, 23, 1493–1510.CrossRefGoogle Scholar
  65. Shapkova, E. Y., Shapkova, A. L., Goodman, S. R., Zatsiorsky, V. M., & Latash, M. L. (2008). Do synergies decrease force variability? A study of single-finger and multi-finger force production. Experimental Brain Research, 188, 411–425.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Sherwood, D. E. (1994). Hand preference, practice order, and spatial assimilations in rapid bimanual movements. Journal of Motor Behavior, 26, 123–134.PubMedCrossRefGoogle Scholar
  67. Sisti, H. M., Geurts, M., Clerckx, R., Gooijers, J., Coxon, J. P., Heitger, M. H., & Swinnen, S. P. (2011). Testing multiple coordination constraints with a novel bimanual visuomotor task. PLoS ONE, 6, e23619.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Spijkers, W., & Heuer, H. (1995). Structural constraints on the performance of symmetrical bimanual movements with different amplitudes. Quarterly Journal of Experimental Psychology Section a-Human Experimental Psychology, 48, 716–740.CrossRefGoogle Scholar
  69. Steglich, C., Heuer, H., Spijkers, W., & Kleinsorge, T. (1999). Bimanual coupling during the specification of isometric forces. Experimental Brain Research, 129, 302–316.PubMedCrossRefGoogle Scholar
  70. Sternad, D., Turvey, M. T., & Saltzman, E. L. (1999a). Dynamics of 1:2 coordination: temporal scaling, latent 1:1, and bistability. Journal of Motor Behavior, 31, 236–247.PubMedCrossRefGoogle Scholar
  71. Sternad, D., Turvey, M. T., & Saltzman, E. L. (1999b). Dynamics of 1:2 coordination: sources of symmetry breaking. Journal of Motor Behavior, 31, 224–235.PubMedCrossRefGoogle Scholar
  72. Sternad, D., Turvey, M. T., & Saltzman, E. L. (1999c). Dynamics of 1:2 coordination: generalizing relative phase to n:m rhythms. Journal of Motor Behavior, 31, 207–223.PubMedCrossRefGoogle Scholar
  73. Stone, K. D., Bryant, D. C., & Gonzalez, C. L. R. (2013). Hand use for grasping in a bimanual task: evidence for different roles? Experimental Brain Research, 224, 455–467.PubMedCrossRefGoogle Scholar
  74. Summers, J. J., Davis, A. S., & Byblow, W. D. (2002). The acquisition of bimanual coordination is mediated by anisotropic coupling between the hands. Human Movement Science, 21, 699–721.PubMedCrossRefGoogle Scholar
  75. Summers, J. J., Maeder, S., Hiraga, C. Y., & Alexander, J. R. (2008). Coordination dynamics and attentional costs of continuous and discontinuous bimanual circle drawing movements. Human Movement Science, 27, 823–837.PubMedCrossRefGoogle Scholar
  76. Summers, J. J., Todd, J. A., & Kim, Y. H. (1993). The influence of perceptual and motor factors on bimanual coordination in a polyrhythmic tapping task. Psychological Research, 55, 107–115.PubMedCrossRefGoogle Scholar
  77. Swinnen, S. P. (2002). Intermanual coordination: from behavioural principles to neural-network interactions. Nature Review: Neuroscience, 3, 348–359.PubMedCrossRefGoogle Scholar
  78. Swinnen, S. P., Dounskaia, N., & Duysens, J. (2002). Patterns of bimanual interference reveal movement encoding within a radial egocentric reference frame. Journal of Cognitive Neuroscience, 14, 463–471.PubMedCrossRefGoogle Scholar
  79. Swinnen, S. P., Dounskaia, N., Levin, O., & Duysens, J. (2001). Constraints during bimanual coordination: the role of direction in relation to amplitude and force requirements. Behavioral Brain Research, 123, 201–218.CrossRefGoogle Scholar
  80. Swinnen, S. P., Dounskaia, N., Walter, C. B., & Serrien, D. J. (1997). Preferred and induced coordination modes during the acquisition of bimanual movements with a 2:1 frequency ratio. Journal of Experimental Psychology: Human Perception and Performance, 23, 1087–1110.Google Scholar
  81. Swinnen, S. P., & Wenderoth, N. (2004). Two hands, one brain: cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 8, 18–25.PubMedCrossRefGoogle Scholar
  82. Temprado, J. J., Chardenon, A., & Laurent, M. (2001). Interplay of biomechanical and neuromuscular constraints on pattern stability and attentional demands in a bimanual coordination task in human subjects. Neuroscience Letters, 303, 127–131.PubMedCrossRefGoogle Scholar
  83. Temprado, J. J., Zanone, P. G., Monno, A., & Laurent, M. (1999). Attentional load associated with performing and stabilizing preferred bimanual patterns. Journal of Experimental Psychology: Human Perception and Performance, 25, 1579–1594.Google Scholar
  84. Therrien, A. S., Lyons, J., & Balasubramaniam, R. (2013). Continuous theta-burst stimulation to primary motor cortex reveals asymmetric compensation for sensory attenuation in bimanual repetitive force production. Journal of Neurophysiology, 110, 872–882.PubMedCrossRefGoogle Scholar
  85. Treffner, P. J., & Turvey, M. T. (1993). Resonance constraints on rhythmic movement. Journal of Experimental Psychology: Human Perception and Performance, 19, 1221–1237.Google Scholar
  86. Uttner, I., Kraft, E., Nowak, D. A., Muller, F., Philipp, J., Zierdt, A., & Hermsdorfer, J. (2007). Mirror movements and the role of handedness: isometric grip forces changes. Motor Control, 11, 16–28.PubMedGoogle Scholar
  87. Zanone, P. G., & Kelso, J. A. S. (1992). The evolution of behavioral attractors with learning: nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance, 18, 403–421.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Deanna M. Kennedy
    • 1
  • Jason B. Boyle
    • 2
  • Chaoyi Wang
    • 1
  • Charles H. Shea
    • 1
  1. 1.Human Performance Laboratory, Department of Health and KinesiologyTexas A&M UniversityCollege StationUSA
  2. 2.Department of KinesiologyUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations