Advertisement

Psychological Research

, Volume 79, Issue 6, pp 963–977 | Cite as

Embodied markedness of parity? Examining handedness effects on parity judgments

  • Stefan Huber
  • Elise Klein
  • Martina Graf
  • Hans-Christoph Nuerk
  • Korbinian Moeller
  • Klaus Willmes
Original Article

Abstract

Parity is important semantic information encoded by numbers. Interestingly, there are hand-based effects in parity judgment tasks: right-hand responses are faster for even and left-hand responses for odd numbers. As this effect was initially explained by the markedness of the words even vs. odd and right vs. left, it was denoted as the linguistic markedness of response codes (MARC) effect. In the present study, we investigated whether the MARC effect differs for right and left handers. We conducted a parity judgment task, in which right- and left-handed participants had to decide whether a presented single or two-digit number was odd or even by pressing a corresponding response key. We found that handedness modulated the MARC effect for unit digits. While we replicated a regular MARC effect for right handers, there was no evidence for a MARC effect for left handers. However, closer inspection revealed that the MARC effect in left handers depended on the degree of left-handedness with a reversed MARC effect for most left-handed participants. Furthermore, although parity of tens digits interfered with the processing of unit digits, the MARC effect for tens digits was not modulated by handedness. Our findings are discussed in the light of three different accounts for the MARC effect: the linguistic markedness account, the polarity correspondence principle, and the body-specificity hypothesis.

Keywords

Polarity Code Edinburgh Handedness Inventory SNARC Effect Parity Judgment Unit Digit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412.CrossRefGoogle Scholar
  2. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language, 68(3), 255–278.CrossRefGoogle Scholar
  3. Bates, D. (2006). lmer, p-values and all that. https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html.
  4. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-6. Retrieved from http://CRAN.R-project.org/package=lme4.
  5. Berch, D. B., Foley, E. J., Hill, R. J., & Ryan, P. M. (1999). Extracting parity and magnitude from arabic numerals: developmental changes in number processing and mental representation. Journal of Experimental Child Psychology, 74(4), 286–308. doi: 10.1006/jecp.1999.2518.CrossRefPubMedGoogle Scholar
  6. Beringer, J. (1994). ERTS: a flexible software tool for developing and running psychological reaction time experiments on IBM PCs. Behavior Research Methods, Instruments, and Computers, 26(3), 368–369. doi: 10.3758/BF03204646.CrossRefGoogle Scholar
  7. Bull, R., Cleland, A. A., & Mitchell, T. (2013). Sex differences in the spatial representation of number. Journal of Experimental Psychology: General, 142(1), 181–192. doi: 10.1037/a0028387.CrossRefGoogle Scholar
  8. Casasanto, D. (2009). Embodiment of abstract concepts: good and bad in right- and left-handers. Journal of Experimental Psychology: General, 138(3), 351–367. doi: 10.1037/a0015854.CrossRefGoogle Scholar
  9. Casasanto, D. (2011). Different bodies, different minds: the body specificity of language and thought. Current Directions in Psychological Science, 20(6), 378–383. doi: 10.1177/0963721411422058.CrossRefGoogle Scholar
  10. Casasanto, D., & Chrysikou, E. G. (2011). When left is “right”. Motor fluency shapes abstract concepts. Psychological Science, 22(4), 419–422. doi: 10.1177/0956797611401755.CrossRefPubMedGoogle Scholar
  11. Castronovo, J., & Crollen, V. (2011). Numerical comparison of two-digit numbers: how differences at encoding can involve differences in processing. Journal of Cognitive Psychology, 23(1), 8–17. doi: 10.1080/20445911.2011.445985.CrossRefGoogle Scholar
  12. Cho, Y. S., & Proctor, R. W. (2007). When is an odd number not odd? Influence of task rule on the MARC effect for numeric classification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(5), 832–842. doi: 10.1037/0278-7393.33.5.832.PubMedGoogle Scholar
  13. de la Vega, I., Dudschig, C., De Filippis, M., Lachmair, M., & Kaup, B. (2013). Keep your hands crossed: The valence-by-left/right interaction is related to hand, not side, in an incongruent hand–response key assignment. Acta Psychologica, 142(2), 273–277. doi: 10.1016/j.actpsy.2012.12.011.CrossRefPubMedGoogle Scholar
  14. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. doi: 10.1037/0096-3445.122.3.371.CrossRefGoogle Scholar
  15. Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 626–641.PubMedGoogle Scholar
  16. Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386–392. doi: 10.1016/j.cortex.2007.08.004.CrossRefPubMedGoogle Scholar
  17. Fischer, M. H., & Brugger, P. (2011). When digits help digits: spatial-Numerical Associations Point To Finger Counting as Prime Example of Embodied Cognition. Frontiers in Psychology, 2, 260.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Experimental Psychology (formerly Zeitschrift für Experimentelle Psychologie), 56(5), 361–366. doi: 10.1027/1618-3169.56.5.361.CrossRefGoogle Scholar
  19. Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd ed.). Sage: Thousand Oaks.Google Scholar
  20. Ganor-Stern, D., Tzelgov, J., & Ellenbogen, R. (2007). Automaticity of two-digit numbers. Journal of Experimental Psychology: Human Perception and Performance, 33(2), 483–496. doi: 10.1037/0096-1523.33.2.483.PubMedGoogle Scholar
  21. Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal-spatial and visuospatial coding of number-space interactions. Journal of Experimental Psychology: General, 139(1), 180–190. doi: 10.1037/a0017688.CrossRefGoogle Scholar
  22. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  23. Herrera, A., Macizo, P., & Semenza, C. (2008). The role of working memory in the association between number magnitude and space. Acta Psychologica, 128(2), 225–237. doi: 10.1016/j.actpsy.2008.01.002.CrossRefPubMedGoogle Scholar
  24. Hines, T. M. (1990). An odd effect: lengthened reaction times for judgments about odd digits. Memory and Cognition, 18(1), 40–46. doi: 10.3758/BF03202644.CrossRefPubMedGoogle Scholar
  25. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65-70.Google Scholar
  26. Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363.CrossRefPubMedGoogle Scholar
  27. Huber, S., Moeller, K., Nuerk, H. C., Macizo, P., Herrera, A., & Willmes, K. (2013). Cognitive control in number processing—A computational model. In: R. West & T. Stewart (Eds.), Proceedings of the 12th International Conference on Cognitive Modeling (pp. 185–190). Ottawa: Carleton University.Google Scholar
  28. Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: evidence from the SNARC effect. Memory and Cognition, 32(4), 662–673.CrossRefPubMedGoogle Scholar
  29. Kilshaw, D., & Annett, M. (1983). Right- and left-hand skill I: effects of age, sex and hand preference showing superior skill in left-handers. British Journal of Psychology, 74, 253–268.CrossRefPubMedGoogle Scholar
  30. Kinoshita, S., & Peek-O’Leary, M. (2006). Two bases of the compatibility effect in the Implicit Association Test (IAT). The Quarterly Journal of Experimental Psychology, 59(12), 2020–2120. doi: 10.1080/17470210500451141.Google Scholar
  31. Klein, E., Moeller, K., Nuerk, H.-C., & Willmes, K. (2010). On the neuro-cognitive foundations of basic auditory number processing: an fMRI study. Behavioral and Brain Functions, 6(1), 42. doi: 10.1186/1744-9081-6-42.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Lindemann, O., Abolafia, J. M., Pratt, J., & Bekkering, H. (2008). Coding strategies in number space: memory requirements influence spatial-numerical associations. Quarterly Journal of Experimental Psychology, 61(4), 515–524. doi: 10.1080/17470210701728677.CrossRefGoogle Scholar
  33. Lindemann, O., Alipour, A., & Fischer, M. H. (2011). Finger counting habits in middle eastern and western individuals: an online survey. Journal of Cross-Cultural Psychology, 42(4), 566–578. doi: 10.1177/0022022111406254.CrossRefGoogle Scholar
  34. Linkenauger, S. A., Witt, J. K., Bakdash, J. Z., Stefanucci, J. K., & Proffitt, D. R. (2009). Asymmetrical body perception: a possible role for neural body representations. Psychological Science, 20(11), 1373–1380. doi: 10.1111/j.1467-9280.2009.02447.x.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Lorch, R. F, Jr, & Myers, J. L. (1990). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 149–157.PubMedGoogle Scholar
  36. Moeller, K., Huber, S., Nuerk, H.-C., & Willmes, K. (2011). Two-digit number processing: holistic, decomposed or hybrid? A computational modelling approach. Psychological Research, 75(4), 290–306.PubMedGoogle Scholar
  37. Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology, 57(5), 835–863. doi: 10.1080/02724980343000512.CrossRefPubMedGoogle Scholar
  38. Nuerk, H.-C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental number line: a review of multi-digit number processing. Zeitschrift für Psychologie/Journal of Psychology, 219(1), 3–22.CrossRefGoogle Scholar
  39. Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82(1), B25–B33. doi: 10.1016/S0010-0277(01)00142-1.CrossRefPubMedGoogle Scholar
  40. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113. doi: 10.1016/0028-3932(71)90067-4.CrossRefPubMedGoogle Scholar
  41. Oppenheimer, D. M. (2008). The secret life of fluency. Trends in Cognitive Sciences, 12(6), 237–241. doi: 10.1016/j.tics.2008.02.014.CrossRefPubMedGoogle Scholar
  42. Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: a general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416–442. doi: 10.1037/0033-2909.132.3.416.CrossRefPubMedGoogle Scholar
  43. R Development Core Team. (2014). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.
  44. Reber, R., Winkielman, P., & Schwarz, N. (1998). Effects of Perceptual Fluency on Affective Judgments. Psychological Science, 9(1), 45–48.CrossRefGoogle Scholar
  45. Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83(2, pt. 1), 274–278. doi: 10.1037/h0028573.CrossRefGoogle Scholar
  46. Reynvoet, B., & Brysbaert, M. (1999). Single-digit and two-digit Arabic numerals address the same semantic number line. Cognition, 72(2), 191–201. doi: 10.1016/S0010-0277(99)00048-7.CrossRefPubMedGoogle Scholar
  47. Schwarz, W., & Keus, I. M. (2004). Moving the eyes along the mental number line: comparing SNARC effects with saccadic and manual responses. Perception and Psychophysics, 66(4), 651–664. doi: 10.3758/BF03194909.CrossRefPubMedGoogle Scholar
  48. Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328–331. doi: 10.3758/pbr.16.2.328.CrossRefGoogle Scholar
  49. Shaki, S., & Petrusic, W. M. (2005). On the mental representation of negative numbers: context-dependent SNARC effects with comparative judgments. Psychonomic Bulletin and Review, 12(5), 931–937.CrossRefPubMedGoogle Scholar
  50. Shaki, S., Petrusic, W. M., & Leth-Steensen, C. (2012). SNARC effects with numerical and non-numerical symbolic comparative judgments: instructional and cultural dependencies. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 515–530. doi: 10.1037/a0026729.PubMedGoogle Scholar
  51. Shepard, R. N., Kilpatric, D. W., & Cunningham, J. P. (1975). The internal representation of numbers. Cognitive Psychology, 7(1), 82–138. doi: 10.1016/0010-0285(75)90006-7.CrossRefGoogle Scholar
  52. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662.CrossRefGoogle Scholar
  53. Tan, S., & Dixon, P. (2011). Repetition and the SNARC effect with one- and two-digit numbers. Canadian Journal of Experimental Psychology, 65(2), 84–97. doi: 10.1037/a0022368.CrossRefPubMedGoogle Scholar
  54. van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119(1), 114–119. doi: 10.1016/j.cognition.2010.12.013.CrossRefPubMedGoogle Scholar
  55. van Dijck, J. P., Gevers, W., & Fias, W. (2009). Numbers are associated with different types of spatial information depending on the task. Cognition, 113(2), 248–253. doi: 10.1016/j.cognition.2009.08.005.CrossRefPubMedGoogle Scholar
  56. Willmes, K., & Iversen, W. (1995). On the internal representation of number parity. Paper presented at the Spring Annual General Meeting of the British Neuropsychological Society. London.Google Scholar
  57. Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychology Science Quarterly, 50(4), 489–525.Google Scholar
  58. Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: the SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1–2), 1–2.Google Scholar
  59. Zimmer, K. E. (1964). Affixed negation in English and other languages: An investigation of restricted productivity. Word, 20, 2, Monograph No. 5.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stefan Huber
    • 1
  • Elise Klein
    • 1
    • 2
  • Martina Graf
    • 2
  • Hans-Christoph Nuerk
    • 1
    • 3
  • Korbinian Moeller
    • 1
    • 3
  • Klaus Willmes
    • 2
  1. 1.KMRC-Knowledge Media Research CenterTuebingenGermany
  2. 2.Section Neuropsychology, Department of Neurology, University HospitalRWTH Aachen UniversityAachenGermany
  3. 3.Eberhardt-Karls UniversityTuebingenGermany

Personalised recommendations