Psychological Research

, Volume 79, Issue 5, pp 715–728 | Cite as

The relationship of moderate-to-vigorous physical activity to cognitive processing in adolescents: findings from the ALSPAC birth cohort

  • Dominika M. Pindus
  • Robert D. Moore Davis
  • Charles H. Hillman
  • Stephan Bandelow
  • Eef Hogervorst
  • Stuart J. H. Biddle
  • Lauren B. Sherar
Original Article

Abstract

The aim of this study was to assess the relations of daily moderate-to-vigorous physical activity (MVPA) to cognitive functions in 15-year-old adolescents from the Avon Longitudinal Study of Parents and Children while controlling for aerobic fitness. A sub-sample of 667 adolescents (Mage = 15.4 ± 0.16 years; 55 % females) who provided valid data on variables of interest, were used in the analyses. MVPA was objectively assessed using an Actigraph GT1M accelerometer and aerobic fitness was expressed as physical work capacity at the heart rate of 170 beats per minute from a cycle ergometer test. A computerized stop-signal task was used to measure mean reaction time (RT) and standard deviation of RT, as indicators of cognitive processing speed and variability during an attention and inhibitory control task. MVPA was not significantly related to cognitive processing speed or variability of cognitive performance in hierarchical linear regression models. In simple regression models, aerobic fitness was negatively related to mean RT on the simple go condition. Our results suggest that aerobic fitness, but not MVPA, was associated with cognitive processing speed under less cognitively demanding task conditions. The results thus indicate a potential global effect of aerobic fitness on cognitive functions in adolescents but this may differ depending on the specific task characteristics.

References

  1. Avon Longitudinal Study of Parents and Children. Data dictionary (2014). http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/. Accessed 05 March 2014.
  2. Band, G. P. H., van der Molen, M. W., & Logan, G. D. (2003). Horse-race model simulations of the stop-signal procedure. Acta Psychologica, 112(2), 105–142. doi:10.1016/S0001-6918(02)00079-3.CrossRefPubMedGoogle Scholar
  3. Bassett, D. R., Fitzhugh, E. C., Heath, G. W., Erwin, P. C., Frederick, G. M., Wolff, D. L., et al. (2013). Estimated energy expenditures for school-based policies and active living. American Journal of Preventive Medicine, 44(2), 108–113. doi:10.1016/j.amepre.2012.10.017.CrossRefPubMedGoogle Scholar
  4. Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learning and Individual Differences, 21(4), 327–336. doi:10.1016/j.lindif.2011.01.007.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bissett, P. G., & Logan, G. D. (2011). Balancing cognitive demands: control adjustments in the stop-signal paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 37(2), 392–404. doi:10.1037/a0021800.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bland, J., Pfeiffer, K., & Eisenmann, J. (2012). The PWC170: comparison of different stage lengths in 11–16 year olds. European Journal of Applied Physiology, 112(5), 1955–1961. doi:10.1007/s00421-011-2157-z.CrossRefPubMedGoogle Scholar
  7. Booth, J. N., Tomporowski, P. D., Boyle, J. M., Ness, A. R., Joinson, C., Leary, S. D., et al. (2013). Associations between executive attention and objectively measured physical activity in adolescence: findings from ALSPAC, a UK cohort. Mental Health and Physical Activity, 6(3), 212–219. doi:10.1016/j.mhpa.2013.09.002.CrossRefGoogle Scholar
  8. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. doi:10.1037//0033.295X108.3624.CrossRefPubMedGoogle Scholar
  9. Bouchard, C., Blair, S. N., & Haskell, W. L. (2012). Physical activity and health. Champaign: Human Kinetics.Google Scholar
  10. Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A., Henderson, J., et al. (2012). Cohort profile: the ‘Children of the 90 s’—the index offspring of the Avon Longitudinal Study of Parents and Children. International Journal of Epidemiology, 42(1), 111–127. doi:10.1093/ije/dys064.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences, 106(18), 7351–7356. doi:10.1073/pnas.0808187106.CrossRefGoogle Scholar
  12. Burns, R., Hannon, J. C., Brusseau, T. A., Shultz, B., & Eisenman, P. (2013). Indices of abdominal adiposity and cardiorespiratory fitness test performance in middle-school students. Journal of Obesity,. doi:10.1155/2013/912460.PubMedCentralPubMedGoogle Scholar
  13. Carnethon, M. R., Gulati, M., & Greenland, P. (2005). Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults. Journal of American Medical Association, 294(23), 2981–2988. doi:10.1001/jama.294.23.2981.CrossRefGoogle Scholar
  14. Chaddock, L., Erickson, K. I., Prakash, R. S., Voss, M. W., VanPatter, M., Pontifex, M. B., et al. (2012a). A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biological Psychology, 89(1), 260–268. doi:10.1016/j.biopsycho.2011.10.017.CrossRefPubMedGoogle Scholar
  15. Chaddock, L., Hillman, C. H., Pontifex, M. B., Johnson, C. R., Raine, L. B., & Kramer, A. F. (2012b). Childhood aerobic fitness predicts cognitive performance one year later. Journal of Sports Sciences, 30(5), 421–430. doi:10.1080/02640414.2011.647706.CrossRefPubMedGoogle Scholar
  16. Chaddock-Heyman, L., Erickson, K.I., Voss, M., Knecht, A., Pontifex, M.B., Castelli, D., et al. (2013). The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention. Frontiers in Human Neuroscience, 7, 1–13. doi:10.3389/fnhum.2013.00072.
  17. Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Science, 14(2), 125–130. doi:10.1111/1467-9280.t01-1-01430.CrossRefPubMedGoogle Scholar
  18. Davis, C. L., & Cooper, S. (2011). Fitness, fatness, cognition, behavior, and academic achievement among overweight children: do cross-sectional associations correspond to exercise trial outcomes? Preventive Medicine, 52, S65–S69. doi:10.1016/j.ypmed.2011.01.020.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Davis, C. L., Tomporowski, P. D., McDowell, J. E., Austin, B. P., Miller, P. H., Yanasak, N. E., et al. (2011). Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health Psychology, 30(1), 91–98. doi:10.1037/a0021766.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Dencker, M., & Andersen, L. B. (2011). Accelerometer-measured daily physical activity related to aerobic fitness in children and adolescents. Journal of Sports Sciences, 29(9), 887–895. doi:10.1080/02640414.2011.578148.CrossRefPubMedGoogle Scholar
  21. Dencker, M., Thorsson, O., Karlsson, M. K., Lindén, C., Eiberg, S., Wollmer, P., et al. (2007). Gender differences and determinants of aerobic fitness in children aged 8–11 years. European Journal of Applied Physiology, 99(1), 19–26. doi:10.1007/s00421-006-0310-x.CrossRefPubMedGoogle Scholar
  22. Department of Health (2011). UK physical activity guidelines. Fact sheet 3: children and young people (5–18 years). In Department of Health (Ed.). London: GOV.UK.Google Scholar
  23. Der, G., & Deary, I. J. (2006). Age and sex differences in reaction time in adulthood: results from the United Kingdom Health and Lifestyle Survey. Psychology and Aging, 21(1), 62–73. doi:10.1037/0882-7974.21.1.62.CrossRefPubMedGoogle Scholar
  24. Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333(6045), 959–964. doi:10.1126/science.1204529.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Etnier, J. L. (2006). Are we ready to prescribe physical activity to promote cognitive function? Medicine and Science in Sports and Exercise, 38(5), S29–S30.Google Scholar
  26. Freedson, P. S., Melanson, E., & Sirard, J. (1998). Calibration of the computer science and applications, Inc. accelerometer. Medicine and Science in Sports and Exercise, 30(5), 777–781. doi:10.1097/00005768-199805000-00021.CrossRefPubMedGoogle Scholar
  27. Gutin, B., & Owens, S. (2011). The influence of physical activity on cardiometabolic biomarkers in youths: a review. Pediatric Exercise Science, 23(2), 169–185.PubMedGoogle Scholar
  28. Gutman, L. M., & Feinstein, L. (2008). Parenting behaviours and children’s development from infancy to early childhood: changes, continuities and contributions. Early Child Development and Care, 180(4), 535–556. doi:10.1080/03004430802113042.CrossRefGoogle Scholar
  29. Hallal, P. C., Victora, C. G., Azevedo, M. R., & Wells, J. C. K. (2006). Adolescent physical activity and health: a systematic review. Sports Medicine, 36(12), 1019–1030. doi:10.2165/00007256-200636120-00003.CrossRefPubMedGoogle Scholar
  30. Handley, S. J., Capon, A., Beveriddge, M., Dennis, I., & Evans, J. S. B. T. (2004). Working memory, inhibitory control and the development of children’s reasoning. Thinking & Reasoning, 10(2), 175–195.CrossRefGoogle Scholar
  31. Hillman, C. H., Castelli, D. M., & Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine and Science in Sports and Exercise, 37(11), 1967–1974. doi:10.1249/01.mss.0000176680.79702.ce.CrossRefPubMedGoogle Scholar
  32. Hillman, C. H., Motl, R. W., Pontifex, M. B., Posthuma, D., Stubbe, J. H., Boomsma, D. I., et al. (2006). Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychology, 25(6), 678–687. doi:10.1037/0278-6133.25.6.678.CrossRefPubMedGoogle Scholar
  33. Iannotti, R. J., Kogan, M. D., Janssen, I., & Boyce, W. F. (2009). Patterns of adolescent physical activity, screen-based media use, and positive and negative health indicators in the U.S. and Canada. Journal of Adolescent Health, 44(5), 493–499. doi:10.1016/j.jadohealth.2008.10.142.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Kamijo, K., Khan, N. A., Pontifex, M. B., Scudder, M. R., Drollette, E. S., Raine, L. B., et al. (2012). The relation of adiposity to cognitive control and scholastic achievement in preadolescent children. Obesity, 20(12), 2406–2411. doi:10.1038/oby.2012.112.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Kamijo, K., Pontifex, M. B., O’Leary, K. C., Scudder, M. R., Wu, C.-T., Castelli, D. M., et al. (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Developmental Science, 14(5), 1046–1058. doi:10.1111/j.1467-7687.2011.01054.x.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Kothari, R., Solmi, F., Treasure, J., & Micali, N. (2013). The neuropsychological profile of children at high risk of developing an eating disorder. Psychological Medicine, 43(07), 1543–1554. doi:10.1017/S0033291712002188.CrossRefPubMedGoogle Scholar
  37. Lawlor, D., Cooper, A., Bain, C., Davey Smith, G., Irwin, A., Riddoch, C., et al. (2008). Associations of birth size and duration of breast feeding with cardiorespiratory fitness in childhood: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). European Journal of Epidemiology, 23(6), 411–422. doi:10.1007/s10654-008-9259-x.CrossRefPubMedGoogle Scholar
  38. Logan, G. D. (1994). On the ability to inhibit thought and action: a users’ guide to the stop signal paradigm. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 189–239). San Diego: Academic Press.Google Scholar
  39. Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: a model and a method. Journal of Experimental Psychology: Human Perception and Performance, 10(2), 276–291. doi:10.1037/0096-1523.10.2.276.PubMedGoogle Scholar
  40. Luna, B., & Sweeney, J. A. (2004). The emergence of collaborative brain function: fMRI studies of the development of response inhibition. Annals of the New York Academy of Sciences, 1021(1), 296–309. doi:10.1196/annals.1308.035.CrossRefPubMedGoogle Scholar
  41. Mahmood, O. M., Goldenberg, D., Thayer, R., Migliorini, R., Simmons, A. N., & Tapert, S. F. (2013). Adolescents’ fMRI activation to a response inhibition task predicts future substance use. Addictive Behaviors, 38(1), 1435–1441. doi:10.1016/j.addbeh.2012.07.012.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Manly, T., Anderson, V., Nimmo-Smith, I., Turner, A., Watson, P., & Robertson, I. H. (2001). The differential assessment of children’s attention: the test of everyday attention for children (TEA-Ch), normative sample and ADHD performance. Journal of Child Psychology and Psychiatry, 42(8), 1065–1081. doi:10.1111/1469-7610.00806.CrossRefPubMedGoogle Scholar
  43. Manly, T., Robertson, I. H., Anderson, V., & Nimmo-Smith, I. (1998). Test of everyday attention for children (TEA-Ch). Bury St Edmunds: Thames Valley Test Company.Google Scholar
  44. Mattocks, C., Leary, S., Ness, A., Deere, K., Saunders, J., Tilling, K., et al. (2007). Calibration of an accelerometer during free-living activities in children. International Journal of Pediatric Obesity, 2(4), 218–226. doi:10.1080/17477160701408809.CrossRefPubMedGoogle Scholar
  45. Mattocks, C., Ness, A. R., Leary, S. D., Tilling, K., Blair, S. N., Shield, J., et al. (2008). Use of accelerometers in a large field-based study of children: protocols, design issues, and effects on precision. Journal of Physical Activity & Health, 5(Suppl 1), S98–S111.Google Scholar
  46. Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: part I. Basic mechanisms. Psychological Review, 104(1), 3–65. doi:10.1037/0033-295x.104.1.3.CrossRefPubMedGoogle Scholar
  47. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–2002. doi:10.1146/annurev.neuro.24.1.167.CrossRefPubMedGoogle Scholar
  48. Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., et al. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108(7), 2693–2698. doi:10.1073/pnas.1010076108.CrossRefGoogle Scholar
  49. Monette, S., Bigras, M., & Guay, M.-C. (2011). The role of the executive functions in school achievement at the end of Grade 1. Journal of Experimental Child Psychology, 109(2), 158–173. doi:10.1016/j.jecp.2011.01.008.CrossRefPubMedGoogle Scholar
  50. Moore, R. D., Wu, C.-T., Pontifex, M. B., O’Leary, K. C., Scudder, M. R., Raine, L. B., et al. (2013). Aerobic fitness and intra-individual variability of neurocognition in preadolescent children. Brain and Cognition, 82(1), 43–57. doi:10.1016/j.bandc.2013.02.006.PubMedCentralCrossRefPubMedGoogle Scholar
  51. National Research Council (2013). Educating the student body. Taking physical activity and physical education to school. Washington, DC: The National Academies Press.Google Scholar
  52. Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (Vol. 4, pp. 1–18)., Advances in research and theory New York: Plenum Press.CrossRefGoogle Scholar
  53. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMedGoogle Scholar
  54. Ong, K. K., Emmett, P., Northstone, K., Golding, J., Rogers, I., Ness, A. R., et al. (2009). Infancy weight gain predicts childhood body fat and age at menarche in girls. Journal of Clinical Endocrinology and Metabolism, 94(5), 1527–1532. doi:10.1210/jc.2008-2489.CrossRefPubMedGoogle Scholar
  55. Ortega, F. B., Tresaco, B., Ruiz, J. R., Moreno, L. A., Martin-Matillas, M., Mesa, J. L., et al. (2007). Cardiorespiratory fitness and sedentary activities are associated with adiposity in adolescents. Obesity, 15(6), 1589–1599. doi:10.1038/oby.2007.188.CrossRefPubMedGoogle Scholar
  56. Padilla, C., Perez, L., Andres, P., & Parmentier, F. B. R. (2013). Exercise improves cognitive control: evidence from the Stop Signal task. Applied Cognitive Psychology, 27(4), 505–511. doi:10.1002/acp.2929.CrossRefGoogle Scholar
  57. Pontifex, M. B., Raine, L. B., Johnson, C. R., Chaddock, L., Voss, M. W., Cohen, N. J., et al. (2011). Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. Journal of Cognitive Neuroscience, 23(6), 1332–1345. doi:10.1162/jocn.2010.21528.CrossRefPubMedGoogle Scholar
  58. Prince, S., Adamo, K., Hamel, M., Hardt, J., Gorber, S., & Tremblay, M. (2008). A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. International Journal of Behavioral Nutrition and Physical Activity, 5(1), 56. doi:10.1186/1479-5868-5-56.PubMedCentralCrossRefPubMedGoogle Scholar
  59. Rodrigues, L. P., Leitão, R., & Lopes, V. P. (2013). Physical fitness predicts adiposity longitudinal changes over childhood and adolescence. Journal of Science and Medicine in Sport, 16(2), 118–123. doi:10.1016/j.jsams.2012.06.008.CrossRefPubMedGoogle Scholar
  60. Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 83–92. doi:10.1016/j.intell.2006.05.004.CrossRefGoogle Scholar
  61. Sherar, L., Griew, P., Esliger, D., Cooper, A., Ekelund, U., Judge, K., et al. (2011). International children’s accelerometry database (ICAD): design and methods. BMC Public Health, 11(1), 485.PubMedCentralCrossRefPubMedGoogle Scholar
  62. St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: shifting, updating, inhibition, and working memory. The Quarterly Journal of Experimental Psychology, 59(4), 745–759. doi:10.1080/17470210500162854.CrossRefPubMedGoogle Scholar
  63. The US Department of Health and Human Services (2008). 2008 physical activity guidelines for Americans: Be active, healthy, and happy (Vol. Chapter 3, pp. 13–19). Washington.Google Scholar
  64. Tremblay, M. S., Shields, M., Laviolette, M., Craig, C. L., Janssen, I., & Connor Gorber, S. (2010). Fitness of Canadian children and youth: results from the 2007–2009 Canadian Health Measures Survey. Health Reports, 21(1), 7–20.PubMedGoogle Scholar
  65. Troiano, R., Berrigan, D., Dodd, K., Masse, L., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40, 181–188. doi:10.1249/mss.0b013e31815a51b3.CrossRefPubMedGoogle Scholar
  66. Tun, P. A., & Lachman, M. E. (2008). Age differences in reaction time and attention in a national telephone sample of adults: education, sex, and task complexity matter. Developmental Psychology, 44(5), 1421–1429. doi:10.1037/a0012845.PubMedCentralCrossRefPubMedGoogle Scholar
  67. Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12(11), 418–424. doi:10.1016/j.tics.2008.07.005.PubMedCentralCrossRefPubMedGoogle Scholar
  68. Voss, M. W., Chaddock, L., Kim, J. S., Vanpatter, M., Pontifex, M. B., Raine, L. B., et al. (2011). Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience, 199, 166–176. doi:10.1016/j.neuroscience.2011.10.009.PubMedCentralCrossRefPubMedGoogle Scholar
  69. Walhovd, K. B., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., et al. (2011). Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiology of Aging, 32(5), 916–932. doi:10.1016/j.neurobiolaging.2009.05.013.PubMedCentralCrossRefPubMedGoogle Scholar
  70. West, R., Murphy, K. J., Armilio, M. L., Craik, F. I. M., & Stuss, D. T. (2002). Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control. Brain and Cognition, 49(3), 402–419. doi:10.1006/brcg.2001.1507.CrossRefPubMedGoogle Scholar
  71. Wu, C.-T., Pontifex, M. B., Raine, L. B., Chaddock, L., Voss, M. W., Kramer, A. F., et al. (2011). Aerobic fitness and response variability in preadolescent children performing a cognitive control task. Neuropsychology, 25(3), 333–341. doi:10.1037/a0022167.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dominika M. Pindus
    • 1
    • 2
  • Robert D. Moore Davis
    • 2
  • Charles H. Hillman
    • 2
  • Stephan Bandelow
    • 1
  • Eef Hogervorst
    • 1
  • Stuart J. H. Biddle
    • 1
    • 3
    • 4
  • Lauren B. Sherar
    • 1
  1. 1.School of Sport, Exercise and Health SciencesLoughborough UniversityLoughborough,UK
  2. 2.Department of Kinesiology and Community HealthUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.The NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research UnitLeicesterUK
  4. 4.Institute of Sport, Exercise & Active Living (ISEAL)Victoria UniversityMelbourneAustralia

Personalised recommendations