Psychological Research

, Volume 79, Issue 5, pp 813–828 | Cite as

The reversal of perceptual and motor compatibility effects differs qualitatively between metacontrast and random-line masks

  • Anne AtasEmail author
  • Estibaliz San Anton
  • Axel Cleeremans
Original Article


In masked priming tasks, participants typically respond faster to compatible than to incompatible primes, an effect that has been dubbed as the positive compatibility effect (PCE). However, when the interval between the prime and the mask is relatively long, responses are faster to incompatible than to compatible primes. This inversion is called the negative compatibility effect (NCE). Two main origins of the NCE have been proposed. The object-updating theory holds that when the masks share stimulus features with the primes, both perceptual and motor processes generate an NCE. As an example, for masks composed of overlaid left and right prime arrows, the NCE is thought to be positive priming induced by the arrow of the mask pointing in the opposite direction of the prime. In contrast, the motor inhibition theories hold that the origin of the NCE is purely motor and can be demonstrated when masks do not share features with primes. To test both hypotheses, the present study aims at delineating the respective contributions of perceptual and motor components of the NCE in the context of different types of masks. Consistent with the object-updating hypothesis, we found both perceptual and motor NCEs at the long SOA with metacontrast masks (with internal contours corresponding to left and right overlaid arrows). Consistent with the motor inhibition hypothesis, we found motor NCE but no perceptual NCE at the long SOA with random-line masks (containing no prime features). The study thus suggests that the origin of the NCE depends on the type of mask.


Compatibility Effect Short SOAs Positive Priming Identical Trial Negative Compatibility Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Anne Atas is a postdoctoral researcher funded by the F.R.S.-FNRS, which also supports Estibaliz San Anton (as a research fellow) and Axel Cleeremans (as a research director). This research was partly funded by Interuniversity Poles of Attraction Grant P7/33 from the Belgian Science Policy Office (BELSPO).

Conflict of interests

The authors declared that they had no conflicts of interest with respect to their authorship or the publication of this article.


  1. Atas, A., Vermeiren, A., & Cleeremans, A. (2013). Repeating a strongly masked stimulus increases priming and awareness. Consciousness and Cognition, 22(4), 1422–1430.CrossRefPubMedGoogle Scholar
  2. Bowman, H., Schlaghecken, F., & Eimer, M. (2006). A neural network model of inhibitory processes in subliminal priming. Visual Cognition, 13(4), 401–480.CrossRefGoogle Scholar
  3. Boy, F., Evans, C. J., Edden, R. A., Singh, K. D., Husain, M., & Sumner, P. (2010a). Individual differences in subconscious motor control predicted by GABA concentration in SMA. Current Biology, 20(19), 1779–1785.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Boy, F., Husain, M., Singh, K. D., & Sumner, P. (2010b). Supplementary motor area activations in unconscious inhibition of voluntary action. Experimental Brain Research, 206(4), 441–448.CrossRefPubMedGoogle Scholar
  5. Boy, F., Husain, M., & Sumner, P. (2010c). Unconscious inhibition separates two forms of cognitive control. Proceedings of the National Academy of Sciences USA, 107(24), 11134–11139.CrossRefGoogle Scholar
  6. Boy, F., & Sumner, P. (2010). Tight coupling between positive and reversed priming in the masked prime paradigm. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 892–905.PubMedCentralPubMedGoogle Scholar
  7. Boy, F., & Sumner, P. (2014). Visibility predicts priming within but not between people: a cautionary tale for studies of cognitive individual differences. Journal of Experimental Psychology: General, 143(3), 1011–1025.CrossRefGoogle Scholar
  8. Dehaene, S., & Changeux, J. P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70(2), 200–227.CrossRefPubMedGoogle Scholar
  9. Dehaene, S., Naccache, L., Le Clec, H. G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., et al. (1998). Imaging unconscious semantic priming. Nature, 395(6702), 597–600.CrossRefPubMedGoogle Scholar
  10. Eimer, M. (1999). Facilitatory and inhibitory effects of masked prime stimuli on motor activation and behavioural performance. Acta Psychology (Amsterdam), 101(2–3), 293–313.CrossRefGoogle Scholar
  11. Eimer, M., & Schlaghecken, F. (1998). Effects of masked stimuli on motor activation: behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 24(6), 1737–1747.PubMedGoogle Scholar
  12. Eimer, M., & Schlaghecken, F. (2002). Links between conscious awareness and response inhibition: evidence from masked priming. Psychonomic Bulletin & Review, 9(3), 514–520.CrossRefGoogle Scholar
  13. Eimer, M., & Schlaghecken, F. (2003). Response facilitation and inhibition in subliminal priming. Biological Psychology, 64(1–2), 7–26.CrossRefPubMedGoogle Scholar
  14. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16, 143–149.CrossRefGoogle Scholar
  15. Ferrand, L. (1996). The masked repetition priming effect dissipates when increasing the inter-stimulus interval: evidence from word naming. Acta Psychologica, 91(1), 15–25.CrossRefGoogle Scholar
  16. Greenwald, A. G., Draine, S. C., & Abrams, R. L. (1996). Three cognitive markers of unconscious semantic activation. Science, 273(5282), 1699–1702.CrossRefPubMedGoogle Scholar
  17. Jaśkowski, P. (2008). The negative compatibility effect with nonmasking flankers: a case for mask-triggered inhibition hypothesis. Consciousness and Cognition, 17(3), 765–777.CrossRefPubMedGoogle Scholar
  18. Jaśkowski, P., Bialunska, A., Tomanek, M., & Verleger, R. (2008). Mask- and distractor-triggered inhibitory processes in the priming of motor responses: an EEG study. Psychophysiology, 45(1), 70–85.PubMedGoogle Scholar
  19. Jaśkowski, P., & Przekoracka-Krawczyk, A. (2005). On the role of mask structure in subliminal priming. Acta Neurobiol Exp (Wars), 65(4), 409–417.Google Scholar
  20. Jaśkowski, P., & Verleger, R. (2007). What determines the direction of subliminal priming. Advances in Cognitive Psychology, 3(1–2), 181–192.PubMedCentralCrossRefGoogle Scholar
  21. Kim, C. Y., & Blake, R. (2005). Psychophysical magic: rendering the visible ‘invisible’. Trends in Cognitive Sciences, 9(8), 381–388.CrossRefPubMedGoogle Scholar
  22. Klapp, S. T. (2005). Two versions of the negative compatibility effect: comment on Lleras and Enns (2004). Journal of Experimental Psychology: General, 134(3), 431–435.CrossRefGoogle Scholar
  23. Klapp, S. T., & Hinkley, L. B. (2002). The negative compatibility effect: unconscious inhibition influences reaction time and response selection. Journal of Experimental Psychology: General, 131(2), 255–269.CrossRefGoogle Scholar
  24. Klotz, W., & Neumann, O. (1999). Motor activation without conscious discrimination in metacontrast masking. Journal of Experimental Psychology: Human Perception and Performance, 25, 976–992.Google Scholar
  25. Kouider, S., & Dehaene, S. (2007). Levels of processing during non-conscious perception: a critical review of visual masking. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 362(1481), 857–875.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Kouider, S., & Dehaene, S. (2009). Subliminal number priming within and across the visual and auditory modalities. Experimental Psychology, 56(6), 418–433.CrossRefPubMedGoogle Scholar
  27. Krüger, D., Klapötke, S., & Mattler, U. (2011). PRP-paradigm provides evidence for a perceptual origin of the negative compatibility effect. Consciousness and Cognition, 20(3), 866–881.CrossRefPubMedGoogle Scholar
  28. Lingnau, A., & Vorberg, D. (2005). The time course of response inhibition in masked priming. Perception and Psychophysics, 67(3), 545–557.CrossRefPubMedGoogle Scholar
  29. Lleras, A., & Enns, J. T. (2004). Negative compatibility or object updating? A cautionary tale of mask-dependent priming. Journal of Experimental Psychology: General, 133(4), 475–493.CrossRefGoogle Scholar
  30. Lleras, A., & Enns, J. T. (2006). How much like a target can a mask be? Geometric, spatial, and temporal similarity in priming: a reply to Schlaghecken and Eimer (2006). Journal of Experimental Psychology: General, 135(3), 495–500.CrossRefGoogle Scholar
  31. Mattler, U. (2006). On the locus of priming and inverse priming effects. Perception and Psychophysics, 68(6), 975–991.CrossRefPubMedGoogle Scholar
  32. McBride, J., Boy, F., Husain, M., & Sumner, P. (2012). Automatic motor activation in the executive control of action. Frontiers in Human Neuroscience, 6, 82.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Naccache, L., Blandin, E., & Dehaene, S. (2002). Unconscious masked priming depends on temporal attention. Psychological Science, 13(5), 416–424.CrossRefPubMedGoogle Scholar
  34. Neumann, O., & Klotz, W. (1994). Motor responses to nonreportable, masked stimuli: Where is the limit of direct parameter specification? In C. Umiltà & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp. 123–150). Cambridge: MIT Press.Google Scholar
  35. Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E. J. (2011). Erroneous analyses of interactions in neuroscience: a problem of significance. Nature Neuroscience, 14(9), 1105–1107.CrossRefPubMedGoogle Scholar
  36. Nigbur, R., Cohen, M. X., Ridderinkhof, K. R., & Sturmer, B. (2012). Theta dynamics reveal domain-specific control over stimulus and response conflict. Journal of Cognitive Neuroscience, 24(5), 1264–1274.CrossRefPubMedGoogle Scholar
  37. Praamstra, P., & Seiss, E. (2005). The neurophysiology of response competition: motor cortex activation and inhibition following subliminal response priming. Journal of Cognitive Neuroscience, 17(3), 483–493.CrossRefPubMedGoogle Scholar
  38. Raghunathan, T. E., Rosenthal, R., & Rubin, D. B. (1996). Comparing correlated but nonoverlapping correlations. Psychological Methods, 1, 178–183.CrossRefGoogle Scholar
  39. Schlaghecken, F., & Eimer, M. (2000). A central-peripheral asymmetry in masked priming. Perception and Psychophysics, 62(7), 1367–1382.CrossRefPubMedGoogle Scholar
  40. Schlaghecken, F., & Eimer, M. (2002). Motor activation with and without inhibition: evidence for a threshold mechanism in motor control. Perception and Psychophysics, 64(1), 148–162.CrossRefPubMedGoogle Scholar
  41. Schlaghecken, F., & Eimer, M. (2004). Masked prime stimuli can bias “free” choices between response alternatives. Psychonomic Bulletin & Review, 11(3), 463–468.CrossRefGoogle Scholar
  42. Schlaghecken, F., & Eimer, M. (2006). Active masks and active inhibition: a comment on Lleras and Enns (2004) and on Verleger, Jaśkowski, Aydemir, van der Lubbe, and Groen (2004). Journal of Experimental Psychology: General, 135(3), 484–494.CrossRefGoogle Scholar
  43. Schlaghecken, F., Klapp, S. T., & Maylor, E. A. (2009). Either or neither, but not both: locating the effects of masked primes. Proceedings in Biological Sciences, 276(1656), 515–521.CrossRefGoogle Scholar
  44. Seiss, E., & Praamstra, P. (2004). The basal ganglia and inhibitory mechanisms in response selection: evidence from subliminal priming of motor responses in Parkinson’s disease. Brain, 127(Pt 2), 330–339.CrossRefPubMedGoogle Scholar
  45. Sumner, P. (2007). Negative and positive masked-priming: implications for motor inhibition. Advances in Cognitive Psychology, 3, 317–326.PubMedCentralCrossRefGoogle Scholar
  46. Sumner, P. (2008). Mask-induced priming and the negative compatibility effect. Experimental Psychology (formerly “Zeitschrift für Experimentelle Psychologie”), 55(2), 133–141.CrossRefGoogle Scholar
  47. Sumner, P., Nachev, P., Morris, P., Peters, A. M., Jackson, S. R., Kennard, C., et al. (2007). Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron, 54(5), 697–711.PubMedCentralCrossRefPubMedGoogle Scholar
  48. van Gaal, S., & Lamme, V. A. (2012). Unconscious high-level information processing: implication for neurobiological theories of consciousness. Neuroscientist, 18(3), 287–301.CrossRefPubMedGoogle Scholar
  49. Van Veen, V., & Carter, C. S. (2002). The timing of action-monitoring processes in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 14(4), 593–602.CrossRefPubMedGoogle Scholar
  50. van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. Neuroimage, 14(6), 1302–1308.CrossRefPubMedGoogle Scholar
  51. Verleger, R., Jaśkowski, P., Aydemir, A., van der Lubbe, R. H. J., & Groen, M. (2004). Qualitative Differences Between Conscious and Nonconscious Processing? On Inverse Priming Induced by Masked Arrows. Journal of Experimental Psychology: General, 133(4), 494–515.CrossRefGoogle Scholar
  52. Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., & Schwarzbach, J. (2003). Different time courses for visual perception and action priming. Proceedings of National Academic Science USA, 100(10), 6275–6280.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Anne Atas
    • 1
    • 2
    • 3
    Email author
  • Estibaliz San Anton
    • 1
    • 2
    • 3
  • Axel Cleeremans
    • 1
    • 2
    • 3
  1. 1.Center for Research in Cognition and Neurosciences (CRCN)Université Libre de BruxellesBrusselsBelgium
  2. 2.ULB Neuroscience Institute (UNI)Université Libre de BruxellesBrusselsBelgium
  3. 3.Consciousness, Cognition and Computation Group (CO3)Université libre de BruxellesBrusselsBelgium

Personalised recommendations