Advertisement

Psychological Research

, Volume 79, Issue 4, pp 621–629 | Cite as

Motor contagion: the contribution of trajectory and end-points

  • James W. Roberts
  • Spencer J. Hayes
  • Makoto Uji
  • Simon J. Bennett
Original Article

Abstract

Increased involuntary arm movement deviation when observing an incongruent human arm movement has been interpreted as a strong indicator of motor contagion. Here, we examined the contribution of trajectory and end-point information on motor contagion by altering congruence between the stimulus and arm movement. Participants performed cyclical horizontal arm movements whilst simultaneously observing a stimulus representing human arm movement. The stimuli comprised congruent horizontal movements or vertical movements featuring incongruent trajectory and end-points. A novel, third, stimulus comprised curvilinear movements featuring congruent end-points, but an incongruent trajectory. In Experiment 1, our dependent variables indicated increased motor contagion when observing the vertical compared to horizontal movement stimulus. There was even greater motor contagion in the curvilinear stimulus condition indicating an additive effect of an incongruent trajectory comprising congruent end-points. In Experiment 2, this additive effect was also present when facing perpendicular to the display, and thus with end-points represented as a product of the movement rather than an external spatial reference. Together, these findings support the theory of event coding (Hommel et al., Behav Brain Sci 24:849–878, 2001), and the prediction that increased motor contagion takes place when observed and executed actions share common features (i.e., movement end-points).

Keywords

Action Feature Perpendicular Orientation Incongruent Stimulus Motor Contagion Horizontal Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43, 260–267. doi: 10.1016/j.neuropsychologia.2004.11.012.PubMedCrossRefGoogle Scholar
  2. Boria, S., Fabbri-Destro, M., Cattaneo, L., Sparaci, L., Sinigaglia, C., Santelli, E., Rizzolatti, G. (2009). Intention understanding in autism. PLoS ONE, 4, e5596. doi: 10.1371/journal.pone.0005596.
  3. Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial and imitative cues. Brain and Cognition, 44, 124–143. doi: 10.1006/brcg.2000.1225.PubMedCrossRefGoogle Scholar
  4. Cattaneo, L., Sandrini, M., & Schwarzbach, J. (2010). State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cerebral Cortex, 20, 2252–2258. doi: 10.1093/cercor/bhp291.PubMedCrossRefGoogle Scholar
  5. Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effects: The perception-behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893–910. doi: 10.1037//0022-3514.76.6.893.PubMedCrossRefGoogle Scholar
  6. Csibra, G. (2007). Action mirroring and action understanding: An alternative account. In P. Haggard, Y. Rossetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition, attention and performance XXII (pp. 435–459). Oxford: Oxford University Press.Google Scholar
  7. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176–180. http://link.springer.com/journal/221/91/1/page/1.
  8. Dijkerman, H. C., & Smit, M. C. (2007). Interference of grasping observation during prehension, a behavioural study. Experimental Brain Research, 176, 387–396. doi: 10.1007/s00221-006-0627-z.PubMedCrossRefGoogle Scholar
  9. Gowen, E., Stanley, J., & Miall, R. C. (2008). Movement interference in autism-spectrum disorder. Neuropsychologia, 46, 1060–1068. doi: 10.1016/j.neuropsychologia.2007.11.004.PubMedCrossRefGoogle Scholar
  10. Grafton, S. T., & Hamilton, A. F. (2007). Evidence of a distributed hierarchy of action representation in the brain. Human Movement Science, 26, 590–616. doi: 10.1016/j.humov.2007.05.009.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Hamilton, A. F. D., & Grafton, S. (2006). Goal representation in human anterior intraparietal sulcus. The Journal of Neuroscience, 26, 1133–1137. doi: 10.1523/JNEUROSCI.4551-05.2006.PubMedCrossRefGoogle Scholar
  12. Hardwick, R. M., & Edwards, M. G. (2011). Observed reach trajectory influences executed reach kinematics in prehension. Quarterly Journal of Experimental Psychology, 64, 1082–1093. doi: 10.1080/17470218.2010.538068.CrossRefGoogle Scholar
  13. Hardwick, R. M., & Edwards, M. G. (2012). Motor interference and facilitation arising from observed movement kinematics. Quarterly Journal of Experimental Psychology, 65, 840–847. doi: 10.1080/17470218.2012.672995.CrossRefGoogle Scholar
  14. Hayes, S. J., Ashford, D., & Bennett, S. J. (2008). Goal-directed imitation: The means to an end. Acta Psychologica, 131, 202–208. doi: 10.1016/j.actpsy.2009.05.002.CrossRefGoogle Scholar
  15. Heyes, C., Bird, G., Johnson, H., & Haggard, P. (2005). Experience modulates automatic imitation. Cognitive Brain Research, 22, 233–240. doi: 10.1016/j.cogbrainres2004.09.009.PubMedCrossRefGoogle Scholar
  16. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878. doi: 10.1017/S0140525X01000103.PubMedCrossRefGoogle Scholar
  17. Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2568. doi: 10.1126/science.286.5449.2526.PubMedCrossRefGoogle Scholar
  18. Jansson, E., Wilson, A. D., Williams, J. H. G., & Mon-Williams, M. (2007). Methodological problems undermine tests of ideo-motor conjecture. Experimental Brain Research, 182, 549–558. doi: 10.1007/s00221-007-1013-1.PubMedCrossRefGoogle Scholar
  19. Khan, M. A., Franks, I. M., & Goodman, D. (1998). The effect of practice on the control of rapid aiming movement: Evidence for an interdependency between programming and feedback processing. The Quarterly Journal of Experimental Psychology, 51A, 425–444. doi: 10.1080/713755756.CrossRefGoogle Scholar
  20. Kilner, J. M., Hamilton, A. F., & Blakemore, S. J. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. Social Neuroscience, 2, 158–166. doi: 10.1080/17470910701428190.PubMedCrossRefGoogle Scholar
  21. Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522–525. doi: 10.1080/17470910701428190.PubMedCrossRefGoogle Scholar
  22. Mattar, A. A. G., & Gribble, P. L. (2005). Motor learning by observing. Neuron, 46, 153–160. doi: 10.1016/j.neuron.2005.02.009.PubMedCrossRefGoogle Scholar
  23. Ocampo, B., Painter, D. R., & Kritikos, A. (2012). Event coding and motor priming: how attentional modulation may influence binding across action properties. Experimental Brain Research, 219, 139–150. doi: 10.1007/s00221-012-3073-0.PubMedCrossRefGoogle Scholar
  24. Press, C. (2011). Action observation and robotic agents: Learning and anthropomorphism. Neuroscience and Biobehavioural Reviews, 35, 1410–1418. doi: 10.1016/j.neubiorev.2011.03.004.CrossRefGoogle Scholar
  25. Press, C., Bird, G., Walsh, E., & Heyes, C. (2008). Automatic imitation of intransitive actions. Brain and Cognition, 67, 44–50. doi: 10.1016/j.bandc.2007.11.001.PubMedCrossRefGoogle Scholar
  26. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154. doi: 10.1080/713752551.CrossRefGoogle Scholar
  27. Richardson, M. J., Campbell, W. L., & Schmidt, R. C. (2009). Movement interference during action observation as emergent coordination. Neuroscience Letters, 449, 117–122. doi: 10.1016/j.neulet.2008.10.092.PubMedCrossRefGoogle Scholar
  28. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670. doi: 10.1038/35090060.PubMedCrossRefGoogle Scholar
  29. Stanley, J., Gowen, E., & Miall, R. C. (2007). Effects of agency on movement interference during observation of a moving dot stimulus. Journal of Experimental Psychology: Human Perception and Performance, 33, 915–926. doi: 10.1037/0096-1523.33.4.915.PubMedCentralPubMedGoogle Scholar
  30. Wohlschläger, A., Gattis, M., & Bekkering, H. (2003). Action generation and action perception in imitation: An instance of the ideomotor principle. Philosophical Transactions of the Royal Society of London B, 358, 501–515. doi: 10.1098/rstb.2002.1257.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • James W. Roberts
    • 1
  • Spencer J. Hayes
    • 1
  • Makoto Uji
    • 1
  • Simon J. Bennett
    • 1
  1. 1.Brain and Behaviour Laboratory, Faculty of ScienceLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations