Psychological Research

, Volume 79, Issue 2, pp 206–220 | Cite as

The benefit of no choice: goal-directed plans enhance perceptual processing

  • Markus Janczyk
  • Michael Dambacher
  • Maik Bieleke
  • Peter M. Gollwitzer
Original Article

Abstract

Choosing among different options is costly. Typically, response times are slower if participants can choose between several alternatives (free-choice) compared to when a stimulus determines a single correct response (forced-choice). This performance difference is commonly attributed to additional cognitive processing in free-choice tasks, which require time-consuming decisions between response options. Alternatively, the forced-choice advantage might result from facilitated perceptual processing, a prediction derived from the framework of implementation intentions. This hypothesis was tested in three experiments. Experiments 1 and 2 were PRP experiments and showed the expected underadditive interaction of the SOA manipulation and task type, pointing to a pre-central perceptual origin of the performance difference. Using the additive-factors logic, Experiment 3 further supported this view. We discuss the findings in the light of alternative accounts and offer potential mechanisms underlying performance differences in forced- and free-choice tasks.

Notes

Acknowledgments

This research was supported by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation), grant JA 2307/1-1 awarded to Markus Janczyk. The co-authors were supported by the DFG research unit FOR 1882 Psychoeconomics. We thank Arvid Herwig for many helpful comments on a previous version of this manuscript.

References

  1. Aarts, H., Dijksterhuis, A., & Midden, C. (1999). To plan or not to plan? Goal achievement or interrupting the performance of mundane behaviors. European Journal of Social Psychology, 29, 971–979.CrossRefGoogle Scholar
  2. Achtziger, A., Bayer, U. C., & Gollwitzer, P. M. (2012). Committing to implementation intentions: attention and memory effects for selected situational cues. Motivation and Emotion, 36, 287–300.CrossRefGoogle Scholar
  3. Bayer, U. C., Achtziger, A., Gollwitzer, P. M., & Moskowitz, G. B. (2009). Responding to subliminal cues: do if-then plans facilitate action preparation and initiation without conscious intent? Social Cognition, 27, 183–201.CrossRefGoogle Scholar
  4. Berlyne, D. E. (1957a). Conflict and choice time. British Journal of Psychology, 48, 106–118.CrossRefPubMedGoogle Scholar
  5. Berlyne, D. E. (1957b). Uncertainty and conflict: a point of contact between information-theory and behavior-theory concepts. Psychological Review, 64, 329–339.CrossRefPubMedGoogle Scholar
  6. Bieleke, M., Dambacher, M., Hübner, R., & Gollwitzer, P.M. (2013). A sequential sampling model account of implementation intention effects. Manuscript in preparation.Google Scholar
  7. Brandstätter, V., Lengfelder, A., & Gollwitzer, P. M. (2011). Implementation intentions and efficient action initiation. Journal of Personality and Social Psychology, 81, 946–960.CrossRefGoogle Scholar
  8. Brass, M., & Haggard, P. (2008). The what, when, whether model of intentional action. The Neuroscientist, 14, 319–325.CrossRefPubMedGoogle Scholar
  9. Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27, 229–240.PubMedGoogle Scholar
  10. Frith, C. (2013). The psychology of volition. Experimental Brain Research, 229, 289–299.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Gaschler, R., & Nattkemper, D. (2012). Instructed task demands and utilization of action effect anticipation. Frontiers in Psychology, 3, 578.CrossRefPubMedCentralPubMedGoogle Scholar
  12. Gollwitzer, P. M. (1993). Goal achievement: the role of intentions. European Review of Social Psychology, 4, 141–185.CrossRefGoogle Scholar
  13. Gollwitzer, P. M. (1999). Implementation intentions: strong effects of simple plans. American Psychologist, 54, 493–503.CrossRefGoogle Scholar
  14. Gollwitzer, P. M., & Brandstätter, V. (1997). Implementation intentions and effective goal pursuit. Journal of Personality and Social Psychology, 73, 186.CrossRefGoogle Scholar
  15. Gollwitzer, P. M., & Sheeran, P. (2006). Implementation intentions and goal achievement: a meta-analysis of effects and processes. Advances in Experimental Social Psychology, 38, 69–119.CrossRefGoogle Scholar
  16. Gollwitzer, P. M., Wieber, F., Meyers, A. L., & McCrea, S. M. (2010). How to maximize implementation intention effects. In C. R. Agnew, D. E. Carlston, W. G. Graziano, & J. R. Kelly (Eds.), Then a miracle occurs: focusing on behavior in social psychological theory and research (pp. 137–161). New York: Oxford Press.Google Scholar
  17. Herwig, A., & Horstmann, G. (2011). Action–effect associations revealed by eye movements. Psychonomic Bulletin and Review, 18, 531–537.CrossRefPubMedGoogle Scholar
  18. Herwig, A., Prinz, W., & Waszak, F. (2007). Two modes of sensorimotor integration in intention-based and stimulus-based actions. Quarterly Journal of Experimental Psychology, 60(11), 1540–1554.CrossRefGoogle Scholar
  19. Herwig, A., & Waszak, F. (2009). Intention and attention in ideomotor learning. The Quarterly Journal of Experimental Psychology, 62, 219–227.CrossRefPubMedGoogle Scholar
  20. Herwig, A., & Waszak, F. (2012). Action–effect bindings and ideomotor learning in intention- and stimulus-based actions. Frontiers in Psychology, 3, 444.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Hommel, B. (1998). Automatic stimulus-response translation in dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 24, 1368–1384.PubMedGoogle Scholar
  22. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.CrossRefPubMedGoogle Scholar
  23. Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117(3), 759–784. doi: 10.1037/a0019471.CrossRefPubMedGoogle Scholar
  24. Janczyk, M. (2013). Level 2 perspective taking entails two processes: evidence from PRP experiments. Journal of Experimental Psychology. Learning, Memory, and Cognition, 39, 1878–1887.CrossRefPubMedGoogle Scholar
  25. Janczyk, M., Heinemann, A., & Pfister, R. (2012a). Instant attraction: immediate action–effect bindings occur for both, stimulus- and goal-driven actions. Frontiers in Psychology, 3, 446.CrossRefPubMedCentralPubMedGoogle Scholar
  26. Janczyk, M., Nolden, S., & Jolicoeur, P. (2014). No difference in dual-task costs between forced- and free-choice tasks. Manuscript in revision.Google Scholar
  27. Janczyk, M., Pfister, R., Crognale, M., & Kunde, W. (2012b). Effective rotations: action effects determine the interplay of mental and manual rotations. Journal of Experimental Psychology: General, 141, 489–501.CrossRefGoogle Scholar
  28. Janczyk, M., Skirde, S., Weigelt, M., & Kunde, W. (2009). Visual and tactile action effects determine bimanual coordination performance. Human Movement Science, 28, 437–449.CrossRefPubMedGoogle Scholar
  29. Kühn, S., Elsner, B., Prinz, W., & Brass, M. (2009). Busy doing nothing: evidence for nonaction–effect binding. Psychonomic Bulletin and Review, 16, 542–549.CrossRefPubMedGoogle Scholar
  30. Kunde, W. (2001). Response-effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27, 387–394.PubMedGoogle Scholar
  31. Kunde, W., Pfister, R., & Janczyk, M. (2012). The locus of tool-transformation costs. Journal of Experimental Psychology: Human Perception and Performance, 38, 703–714.PubMedGoogle Scholar
  32. Lengfelder, A., & Gollwitzer, P. M. (2001). Reflective and reflexive action control in patients with frontal brain lesions. Neuropsychology, 15, 80–100.CrossRefPubMedGoogle Scholar
  33. Lien, M.-C., & Proctor, R. W. (2002). Stimulus-response compatibility and psychological refractory period effects: implications for response selection. Psychonomic Bulletin & Review, 9, 212–238.CrossRefGoogle Scholar
  34. Mattler, U., & Palmer, S. (2012). Time course of free-choice priming effects explained by a simple accumulator model. Cognition, 123, 360–437.CrossRefGoogle Scholar
  35. Metzker, M., & Dreisbach, G. (2009). Bidirectional priming processes in the Simon task. Journal of Experimental Psychology: Human Perception and Performance, 35, 1770–1783.PubMedGoogle Scholar
  36. Miller, J., & Reynolds, A. (2003). The locus of redundant-targets and non-targets effects: evidence from the psychological refractory period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 29, 1126–1142.PubMedGoogle Scholar
  37. Müsseler, J., & Hommel, B. (1997). Blindness to response-compatible stimuli. Journal of Experimental Psychology: Human Perception and Performance, 23, 861–872.PubMedGoogle Scholar
  38. Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9, 856–869.CrossRefPubMedGoogle Scholar
  39. Orbell, S., & Sheeran, P. (2000). Motivational and volitional processes in action initiation: a field study of the role of implementation intentions. Journal of Applied Social Psychology, 30, 780–797.CrossRefGoogle Scholar
  40. Paelecke, M., & Kunde, W. (2007). Action–effect codes in and before the central bottleneck: evidence from the psychological refractory period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 33, 627–644.PubMedGoogle Scholar
  41. Parks-Stamm, E. J., Gollwitzer, P. M., & Oettingen, G. (2007). Action control by implementation intentions: effective cue detection and efficient response initiation. Social Cognition, 25, 248–266.CrossRefGoogle Scholar
  42. Pashler, H. (1984). Processing stages in overlapping tasks: evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10, 358–377.PubMedGoogle Scholar
  43. Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. Psychological Bulletin, 116, 220–244.CrossRefPubMedGoogle Scholar
  44. Pashler, H., & Johnston, J. C. (1989). Chronometric evidence for central postponement in temporally overlapping tasks. The Quarterly Journal of Experimental Psychology, 41A, 19–45.CrossRefGoogle Scholar
  45. Passingham, R. E., Bengtsson, S. L., & Lau, H. C. (2010). Medial frontal cortex: from self-generated action to reflection on one’s own performance. Trends in Cognitive Sciences, 14, 16–21.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Pfister, R., Heinemann, A., Kiesel, A., Thomaschke, R., & Janczyk, M. (2012). Do endogenous and exogenous action control compete for perception? Journal of Experimental Psychology: Human Perception and Performance, 38, 279–284.PubMedGoogle Scholar
  47. Pfister, R., Kiesel, A., & Hoffmann, J. (2011). Learning at any rate: action–effect learning for stimulus-based actions. Psychological Research, 75, 61–65.CrossRefPubMedGoogle Scholar
  48. Pfister, R., Kiesel, A., & Melcher, T. (2010). Adaptive control of ideomotor effect anticipations. Acta Psychologica, 135(3), 316–322.CrossRefPubMedGoogle Scholar
  49. Pfister, R., & Kunde, W. (2013). Dissecting the response in response-effect compatibility. Experimental Brain Research, 224, 647–655.CrossRefPubMedGoogle Scholar
  50. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.CrossRefPubMedGoogle Scholar
  51. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology, 109, 160–174.CrossRefPubMedGoogle Scholar
  52. Prinz, W. (1998). Die Reaktion als Willenshandlung. Psychologische Rundschau, 49, 10–20.Google Scholar
  53. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108.CrossRefGoogle Scholar
  54. Schüür, F., & Haggard, P. (2011). What are self-generated actions? Consciousness and Cognition, 20, 1697–1704.CrossRefPubMedGoogle Scholar
  55. Schweickert, R. (1978). A critical path generalization of the additive factor method: analysis of a Stroop task. Journal of Mathematical Psychology, 18, 105–139.CrossRefGoogle Scholar
  56. Sternberg, S. (1969). The discovery of processing stages: extensions of Donders’ method. Acta Psychologica, 30, 276–315.CrossRefGoogle Scholar
  57. Telford, C. W. (1931). The refractory phase of voluntary and associative responses. Journal of Experimental Psychology, 14, 1–36.CrossRefGoogle Scholar
  58. Tombu, M., & Jolicoeur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29, 3–18.PubMedGoogle Scholar
  59. Van Selst, M., & Jolicoeur, P. (1997). Decision and response in dual-task interference. Cognitive Psychology, 33, 266–307.CrossRefPubMedGoogle Scholar
  60. Webb, T. L., & Sheeran, P. (2007). How do implementation intentions promote goal attainment? A test of component processes. Journal of Experimental Social Psychology, 43, 295–302.CrossRefGoogle Scholar
  61. Welford, A. T. (1951). The “psychological refractory period” and the timing of high-speed performance: a review and a theory. British Journal of Psychology, 43, 2–19.Google Scholar
  62. Wieber, F., & Sassenberg, K. (2006). I can’t take my eyes off it: attention attraction effects of implementation intentions. Social Cognition, 24, 723–752.CrossRefGoogle Scholar
  63. Wolfensteller, U., & Ruge, H. (2011). On the timescale of stimulus-based action–effect learning. Quarterly Journal of Experimental Psychology, 64, 1273–1289.CrossRefGoogle Scholar
  64. Wykowska, A., & Schubö, A. (2012). Action intentions modulate allocation of visual attention: electrophysiological evidence. Frontiers in Psychology, 3, 379.PubMedCentralPubMedGoogle Scholar
  65. Wykowska, A., Schubö, A., & Hommel, B. (2009). How you move is what you see: action planning biases selection in visual search. Journal of Experimental Psychology: Human Perception and Performance, 35, 1755–1769.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Markus Janczyk
    • 1
  • Michael Dambacher
    • 2
  • Maik Bieleke
    • 2
  • Peter M. Gollwitzer
    • 2
    • 3
  1. 1.Department of Psychology IIIUniversity of WürzburgWürzburgGermany
  2. 2.Department of PsychologyUniversity of KonstanzConstanceGermany
  3. 3.Department of PsychologyNew York UniversityNew YorkUSA

Personalised recommendations