Psychological Research

, Volume 78, Issue 3, pp 361–378 | Cite as

Attention effects on auditory scene analysis: insights from event-related brain potentials

  • Mona Isabel Spielmann
  • Erich Schröger
  • Sonja A. Kotz
  • Alexandra Bendixen
Original Article

Abstract

Sounds emitted by different sources arrive at our ears as a mixture that must be disentangled before meaningful information can be retrieved. It is still a matter of debate whether this decomposition happens automatically or requires the listener’s attention. These opposite positions partly stem from different methodological approaches to the problem. We propose an integrative approach that combines the logic of previous measurements targeting either auditory stream segregation (interpreting a mixture as coming from two separate sources) or integration (interpreting a mixture as originating from only one source). By means of combined behavioral and event-related potential (ERP) measures, our paradigm has the potential to measure stream segregation and integration at the same time, providing the opportunity to obtain positive evidence of either one. This reduces the reliance on zero findings (i.e., the occurrence of stream integration in a given condition can be demonstrated directly, rather than indirectly based on the absence of empirical evidence for stream segregation, and vice versa). With this two-way approach, we systematically manipulate attention devoted to the auditory stimuli (by varying their task relevance) and to their underlying structure (by delivering perceptual tasks that require segregated or integrated percepts). ERP results based on the mismatch negativity (MMN) show no evidence for a modulation of stream integration by attention, while stream segregation results were less clear due to overlapping attention-related components in the MMN latency range. We suggest future studies combining the proposed two-way approach with some improvements in the ERP measurement of sequential stream segregation.

Notes

Acknowledgments

We gratefully acknowledge the funding of this work by the Max Planck Society (International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity [IMPRS], scholarship to M.I.S.) and by the German Research Foundation (Deutsche Forschungsgemeinschaft [DFG], Reinhart-Koselleck grant to E.S., and DFG Cluster of Excellence 1077 “Hearing4all”). The experiment was realized using Cogent 2000 developed by the Cogent 2000 team at the FIL and the ICN. EEG data were analyzed with EEGlab (Delorme & Makeig, 2004). We are grateful to Andreas Widmann, University of Leipzig, for helpful discussion and for providing an EEGlab plug-in for calculating and plotting topographic maps.

References

  1. Akeroyd, M. A., Carlyon, R. P., & Deeks, J. M. (2005). Can dichotic pitches form two streams? Journal of the Acoustical Society of America, 118, 977–981.PubMedCrossRefGoogle Scholar
  2. Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear and Hearing, 16, 38–51.PubMedCrossRefGoogle Scholar
  3. Bee, M. A., & Micheyl, C. (2008). The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? Journal of Comparative Psychology, 122, 235–251.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bendixen, A., & Andersen, S. K. (2013). Measuring target detection performance in paradigms with high event rates. Clinical Neurophysiology, 124, 928–940.PubMedCrossRefGoogle Scholar
  5. Bendixen, A., Schröger, E., Ritter, W., & Winkler, I. (2012). Regularity extraction from non-adjacent sounds. Frontiers in Psychology, 3, 143.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bregman, A. S. (1990). Auditory scene analysis. The perceptual organization of sound. Cambridge: MIT Press.Google Scholar
  7. Bregman, A. S. (1993). Auditory scene analysis: hearing in complex environments. In S. McAdams & E. Bigand (Eds.), Thinking in sound The cognitive psychology of human audition (pp. 10–36). Oxford: Clarendon Press.CrossRefGoogle Scholar
  8. Bregman, A. S., & Campbell, J. (1971). Primary auditory stream segregation and perception of order in rapid sequences of tones. Journal of Experimental Psychology, 89, 244–249.PubMedCrossRefGoogle Scholar
  9. Brochard, R., Drake, C., Botte, M.-C., & McAdams, S. (1999). Perceptual organization of complex auditory sequences: effect of number of simultaneous subsequences and frequency separation. Journal of Experimental Psychology: Human Perception and Performance, 25, 1742–1759.PubMedGoogle Scholar
  10. Butler, R. A. (1968). Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. Journal of the Acoustical Society of America, 44, 945–950.PubMedCrossRefGoogle Scholar
  11. Carlyon, R. P. (2004). How the brain separates sounds. Trends in Cognitive Sciences, 8, 465–471.PubMedCrossRefGoogle Scholar
  12. Carlyon, R. P., & Cusack, R. (2005). Effects of attention on auditory perceptual organization. In L. Itti, G. Rees, & J. K. Tsotsos (Eds.), The Neurobiology of attention (pp. 317–323). Amsterdam: Elsevier Academic Press.CrossRefGoogle Scholar
  13. Carlyon, R. P., Cusack, R., Foxton, J. M., & Robertson, I. H. (2001). Effects of attention and unilateral neglect on auditory stream segregation. Journal of Experimental Psychology: Human Perception and Performance, 27, 115–127.PubMedGoogle Scholar
  14. Carlyon, R. P., Thompson, S. K., Heinrich, A., Pulvermüller, F., Davis, M. H., Shtyrov, Y., et al. (2010). Objective measures of auditory scene analysis. In E. A. Lopez-Poveda, A. R. Palmer, & R. Meddis (Eds.), The neurophysiological bases of auditory perception (pp. 507–519). New York: Springer.CrossRefGoogle Scholar
  15. Cusack, R., Deeks, J., Aikman, G., & Carlyon, R. P. (2004). Effects of location, frequency region, and time course of selective attention on auditory scene analysis. Journal of Experimental Psychology: Human Perception and Performance, 30, 643–656.PubMedGoogle Scholar
  16. Deike, S., Scheich, H., & Brechmann, A. (2010). Active stream segregation specifically involves the left human auditory cortex. Hearing Research, 265, 30–37.PubMedCrossRefGoogle Scholar
  17. Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.PubMedCrossRefGoogle Scholar
  18. Dolležal, L.-V., Beutelmann, R., & Klump, G. M. (2012). Stream segregation in the perception of sinusoidally amplitude-modulated tones. PLoS One, 7, e43615.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.Google Scholar
  20. Grimault, N., Bacon, S. P., & Micheyl, C. (2002). Auditory stream segregation on the basis of amplitude-modulation rate. Journal of the Acoustical Society of America, 111, 1340–1348.PubMedCrossRefGoogle Scholar
  21. Hautus, M. (1995). Corrections for extreme proportions and their biasing effects on estimated values of d’. Behavior Research Methods, Instruments, and Computers, 27, 46–51.CrossRefGoogle Scholar
  22. Haywood, N. R., & Roberts, B. (2010). Build-up of the tendency to segregate auditory streams: resetting effects evoked by a single deviant tone. Journal of the Acoustical Society of America, 128, 3019–3031.PubMedCrossRefGoogle Scholar
  23. Haywood, N.R., Roberts, B. (2013). Build-up of auditory stream segregation induced by tone sequences of constant or alternating frequency and the resetting effects of single deviants. Journal of Experimental Psychology: Human Perception and Performance, 39, 1652–1666.Google Scholar
  24. Horváth, J., Czigler, I., Jacobsen, T., Maess, B., Schröger, E., & Winkler, I. (2008). MMN or no MMN: no magnitude of deviance effect on the MMN amplitude. Psychophysiology, 45, 60–69.PubMedGoogle Scholar
  25. Horváth, J., Czigler, I., Sussman, E., & Winkler, I. (2001). Simultaneously active pre-attentive representations of local and global rules for sound sequences in the human brain. Cognitive Brain Research, 12, 131–144.PubMedCrossRefGoogle Scholar
  26. Horváth, J., Roeber, U., & Schröger, E. (2009). The utility of brief, spectrally rich, dynamic sounds in the passive oddball paradigm. Neuroscience Letters, 461, 262–265.PubMedCrossRefGoogle Scholar
  27. Jacobsen, T., Horenkamp, T., & Schröger, E. (2003). Preattentive memory-based comparison of sound intensity. Audiology and Neuro-Otology, 8, 338–346.PubMedCrossRefGoogle Scholar
  28. Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 371–375.Google Scholar
  29. Jones, M. R. (1976). Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychological Review, 83, 323–355.PubMedCrossRefGoogle Scholar
  30. Jones, M. R., Jagacinski, R. J., Yee, W., Floyd, R. L., & Klapp, S. T. (1995). Tests of attentional flexibility in listening to polyrhythmic patterns. Journal of Experimental Psychology: Human Perception and Performance, 21, 293–307.PubMedGoogle Scholar
  31. Kasai, K., Nakagome, K., Hiramatsu, K.-I., Fukuda, M., Honda, M., & Iwanami, A. (2002). Psychophysiological index during auditory selective attention correlates with visual continuous performance test sensitivity in normal adults. International Journal of Psychophysiology, 45, 211–225.PubMedCrossRefGoogle Scholar
  32. Kujala, T., Tervaniemi, M., & Schröger, E. (2007). The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biological Psychology, 74, 1–19.PubMedCrossRefGoogle Scholar
  33. Lepistö, T., Kuitunen, A., Sussman, E., Saalasti, S., Jansson-Verkasalo, E., Nieminen-von Wendt, T., et al. (2009). Auditory stream segregation in children with Asperger syndrome. Biological Psychology, 82, 301–307.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Macken, W. J., Tremblay, S., Houghton, R. J., Nicholls, A. P., & Jones, D. M. (2003). Does auditory streaming require attention? Evidence from attentional selectivity in short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 29, 43–51.PubMedGoogle Scholar
  35. Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: a user’s guide (2nd ed.). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  36. May, P. J. C., & Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology, 47, 66–122.PubMedCrossRefGoogle Scholar
  37. McAnally, K. I., Castles, A., & Bannister, S. (2004). Auditory temporal pattern discrimination and reading ability. Journal of Speech, Language, and Hearing Research, 47, 1237–1243.PubMedCrossRefGoogle Scholar
  38. McDermott, J. H. (2009). The cocktail party problem. Current Biology, 19, R1024–R1027.PubMedCrossRefGoogle Scholar
  39. Micheyl, C., & Oxenham, A. J. (2010). Objective and subjective psychophysical measures of auditory stream integration and segregation. Journal of the Association for Research in Otolaryngology, 11, 709–724.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Moore, B. C. J., & Gockel, H. (2002). Factors influencing sequential stream segregation. Acta Acustica United With Acustica, 88, 320–333.Google Scholar
  41. Moore, B. C. J., & Gockel, H. E. (2012). Properties of auditory stream formation. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 367, 919–931.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Muller-Gass, A., Stelmack, R. M., & Campbell, K. B. (2005). “…and were instructed to read a self-selected book while ignoring the auditory stimuli”: the effects of task demands on the mismatch negativity. Clinical Neurophysiology, 116, 2142–2152.PubMedCrossRefGoogle Scholar
  43. Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.PubMedCrossRefGoogle Scholar
  44. Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical Neurophysiology, 118, 2544–2590.PubMedCrossRefGoogle Scholar
  45. Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24, 375–425.PubMedCrossRefGoogle Scholar
  46. Näätänen, R., Simpson, M., & Loveless, N. E. (1982). Stimulus deviance and evoked potentials. Biological Psychology, 14, 53–98.PubMedCrossRefGoogle Scholar
  47. Novak, G. P., Ritter, W., Vaughan, H. G., & Wiznitzer, M. L. (1990). Differentiation of negative event-related potentials in an auditory discrimination task. Electroencephalography and Clinical Neurophysiology, 75, 255–275.PubMedCrossRefGoogle Scholar
  48. Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: selected studies of the event-related potential. International Journal of Medical Sciences, 2, 147–154.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Pettigrew, C. M., Murdoch, B. E., Ponton, C. W., Kei, J., Chenery, H. J., & Alku, P. (2004). Subtitled videos and mismatch negativity (MMN) investigations of spoken word processing. Journal of the American Academy of Audiology, 15, 469–485.PubMedCrossRefGoogle Scholar
  50. Picton, T. W., Alain, C., Otten, L., Ritter, W., & Achim, A. (2000). Mismatch negativity: different water in the same river. Audiology and Neuro-Otology, 5, 111–139.PubMedCrossRefGoogle Scholar
  51. Pressnitzer, D., & Hupé, J. M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current Biology, 16, 1351–1357.PubMedCrossRefGoogle Scholar
  52. Pressnitzer, D., Sayles, M., Micheyl, C., & Winter, I. M. (2008). Perceptual organization of sound begins in the auditory periphery. Current Biology, 18, 1124–1128.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Rahne, T., & Sussman, E. (2009). Neural representations of auditory input accommodate to the context in a dynamically changing acoustic environment. European Journal of Neuroscience, 29, 205–211.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Ritter, W., Paavilainen, P., Lavikainen, J., Reinikainen, K., Alho, K., Sams, M., et al. (1992). Event-related potentials to repetition and change of auditory stimuli. Electroencephalography and Clinical Neurophysiology, 83, 306–321.PubMedCrossRefGoogle Scholar
  55. Ritter, W., & Ruchkin, D. S. (1992). A review of event-related potential components discovered in the context of studying P3. Annals of the New York Academy of Sciences, 658, 1–32.PubMedCrossRefGoogle Scholar
  56. Roberts, B., Glasberg, B. R., & Moore, B. C. J. (2002). Primitive stream segregation of tone sequences without differences in fundamental frequency or passband. Journal of the Acoustical Society of America, 112, 2074–2085.PubMedCrossRefGoogle Scholar
  57. Roberts, B., Glasberg, B. R., & Moore, B. C. J. (2008). Effects of the build-up and resetting of auditory stream segregation on temporal discrimination. Journal of Experimental Psychology: Human Perception and Performance, 34, 992–1006.PubMedGoogle Scholar
  58. Schröger, E. (2005). The mismatch negativity as a tool to study auditory processing. Acta Acustica United with Acustica, 91, 490–501.Google Scholar
  59. Schwartz, J.-L., Grimault, N., Hupé, J.-M., Moore, B. C. J., & Pressnitzer, D. (2012). Multistability in perception: binding sensory modalities, an overview. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 367, 896–905.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34, 114–123.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Shinn-Cunningham, B. G., & Best, V. (2008). Selective attention in normal and impaired hearing. Trends in Amplification, 12, 283–299.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Snyder, J. S., Gregg, M. K., Weintraub, D. M., & Alain, C. (2012). Attention, awareness, and the perception of auditory scenes. Frontiers in Psychology, 3, 15.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Spielmann, M. I., Schröger, E., Kotz, S. A., Pechmann, T., & Bendixen, A. (2013). Using a staircase procedure for the objective measurement of auditory stream integration and segregation thresholds. Frontiers in Psychology, 4, 534.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, and Computers, 31, 137–149.PubMedCrossRefGoogle Scholar
  65. Sussman, E. S. (2007). A new view on the MMN and attention debate: the role of context in processing auditory events. Journal of Psychophysiology, 21, 164–175.CrossRefGoogle Scholar
  66. Sussman, E. S., Bregman, A. S., Wang, W. J., & Khan, F. J. (2005). Attentional modulation of electrophysiological activity in auditory cortex for unattended sounds within multistream auditory environments. Cognitive, Affective, and Behavioral Neuroscience, 5, 93–110.CrossRefGoogle Scholar
  67. Sussman, E., Čeponienė, R., Shestakova, A., Näätänen, R., & Winkler, I. (2001). Auditory stream segregation processes operate similarly in school-aged children and adults. Hearing Research, 153, 108–114.PubMedCrossRefGoogle Scholar
  68. Sussman, E. S., Horváth, J., Winkler, I., & Orr, M. (2007). The role of attention in the formation of auditory streams. Perception and Psychophysics, 69, 136–152.PubMedCrossRefGoogle Scholar
  69. Sussman, E., & Steinschneider, M. (2006). Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex. Brain Research, 1075, 165–174.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Sussman, E., & Steinschneider, M. (2009). Attention effects on auditory scene analysis in children. Neuropsychologia, 47, 771–785.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Thompson, S. K., Carlyon, R. P., & Cusack, R. (2011). An objective measurement of the build-up of auditory streaming and of its modulation by attention. Journal of Experimental Psychology: Human Perception and Performance, 37, 1253–1262.PubMedGoogle Scholar
  72. van Noorden, L. P. A. S. (1975). Temporal coherence in the perception of tone sequences. Doctoral dissertation, Technical University Eindhoven, Eindhoven, The Netherlands.Google Scholar
  73. Vliegen, J., Moore, B. C. J., & Oxenham, A. J. (1999). The role of spectral and periodicity cues in auditory stream segregation, measured using a temporal discrimination task. Journal of the Acoustical Society of America, 106, 938–945.PubMedCrossRefGoogle Scholar
  74. Vliegen, J., & Oxenham, A. J. (1999). Sequential stream segregation in the absence of spectral cues. Journal of the Acoustical Society of America, 105, 339–346.PubMedCrossRefGoogle Scholar
  75. Winkler, I. (1996). Necessary and sufficient conditions for the elicitation of the mismatch negativity. In C. Ogura, Y. Koga & M. Shimokochi (Eds.), Recent advances in event-related brain potentials research. Proceedings of the XIth International Conference on Event-related Brain Potentials (EPIC), Okinawa, Japan, June 25-30, 1995 (pp. 36–43). Amsterdam: Elsevier.Google Scholar
  76. Winkler, I. (2007). Interpreting the mismatch negativity. Journal of Psychophysiology, 21, 147–163.CrossRefGoogle Scholar
  77. Winkler, I., & Czigler, I. (1998). Mismatch negativity: deviance detection or the maintenance of the ‘standard’. NeuroReport, 9, 3809–3813.PubMedCrossRefGoogle Scholar
  78. Winkler, I., Denham, S. L., Mill, R., Bőhm, T. M., & Bendixen, A. (2012). Multistability in auditory stream segregation: a predictive coding view. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 367, 1001–1012.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.PubMedCrossRefGoogle Scholar
  80. Winkler, I., Kushnerenko, E., Horváth, J., Čeponienė, R., Fellman, V., Huotilainen, M., et al. (2003a). Newborn infants can organize the auditory world. Proceedings of the National Academy of Sciences of the United States of America, 100, 11812–11815.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Winkler, I., Sussman, E., Tervaniemi, M., Horváth, J., Ritter, W., & Näätänen, R. (2003b). Preattentive auditory context effects. Cognitive, Affective, and Behavioral Neuroscience, 3, 57–77.CrossRefGoogle Scholar
  82. Yabe, H., Tervaniemi, M., Sinkkonen, J., Huotilainen, M., Ilmoniemi, R. J., & Näätänen, R. (1998). Temporal window of integration of auditory information in the human brain. Psychophysiology, 35, 615–619.PubMedCrossRefGoogle Scholar
  83. Zachau, S., Rinker, T., Körner, B., Kohls, G., Maas, V., Hennighausen, K., et al. (2005). Extracting rules: early and late mismatch negativity to tone patterns. Neuroreport, 16, 2015–2019.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mona Isabel Spielmann
    • 1
    • 2
  • Erich Schröger
    • 1
  • Sonja A. Kotz
    • 2
    • 3
  • Alexandra Bendixen
    • 1
    • 4
  1. 1.Institute of PsychologyUniversity of LeipzigLeipzigGermany
  2. 2.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  3. 3.School of Psychological SciencesThe University of ManchesterManchesterUK
  4. 4.Auditory Psychophysiology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4all”Carl von Ossietzky University of OldenburgOldenburgGermany

Personalised recommendations